Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Small ; : e2401987, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805737

ABSTRACT

Alternative strategies to design sustainable-element-based electrocatalysts enhancing oxygen evolution reaction (OER) kinetics are demanded to develop affordable yet high-performance water-electrolyzers for green hydrogen production. Here, it is demonstrated that the spontaneous-spin-polarized 2D π-d conjugated framework comprising abundant elements of nickel and iron with a ratio of Ni:Fe = 1:4 with benzenehexathiol linker (BHT) can improve OER kinetics by its unique electronic property. Among the bimetallic NiFex:y-BHTs with various ratios with Ni:Fe = x:y, the NiFe1:4-BHT exhibits the highest OER activity. The NiFe1:4-BHT shows a specific current density of 140 A g-1 at the overpotential of 350 mV. This performance is one of the best activities among state-of-the-art non-precious OER electrocatalysts and even comparable to that of the platinum-group-metals of RuO2 and IrO2. The density functional theory calculations uncover that introducing Ni into the homometallic Fe-BHT (e.g., Ni:Fe = 0:1) can emerge a spontaneous-spin-polarized state. Thus, this material can achieve improved OER kinetics with spin-polarization which previously required external magnetic fields. This work shows that a rational design of 2D π-d conjugated frameworks can be a powerful strategy to synthesize promising electrocatalysts with abundant elements for a wide spectrum of next-generation energy devices.

2.
Molecules ; 29(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474570

ABSTRACT

Polybenzimidazoles (PBIs) are recognized for their remarkable thermal stability due to their unique molecular structure, which is characterized by aromaticity and rigidity. Despite their remarkable thermal attributes, their tensile properties limit their application. To improve the mechanical performance of PBIs, we made a vital modification to their molecular backbone to improve their structural flexibility. Non-π-conjugated components were introduced into PBIs by grafting meta-polyamide (MA) and para-polyamide (PA) onto PBI backbones to form the copolymers PBI-co-MA and PBI-co-PA. The results indicated that the cooperation between MA and PA significantly enhanced mechanical strain and overall toughness. Furthermore, the appropriate incorporation of aromatic polyamide components (20 mol% for MA and 15% for PA) improved thermal degradation temperatures by more than 30 °C. By investigating the copolymerization of PBIs with MA and PA, we unraveled the intricate relationships between composition, molecular structure, and material performance. These findings advance copolymer design strategies and deepen the understanding of polymer materials, offering tailored solutions that address thermal and mechanical demands across applications.

3.
Polymers (Basel) ; 16(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38399899

ABSTRACT

The effects of water absorption on the electric resistivity and dielectric constant of polyimide (PI) and poly(ethylene terephthalate) (PET) were investigated, and the mechanism of deterioration in electrical insulation properties was discussed. The polyimides are poly(oxydianiline pyromellitimide) (PMDA-ODA) and poly(para-phenylene diamine biphenyltetracarboxydiimide) (BPDA-PDA). These polymer films were immersed in pure water for various immersion times at room temperature, and the water absorption ratio was evaluated. The electric resistance for these films was measured at room temperature using a high-resistance meter, and the dielectric constant at room temperature was measured using an LCR meter in a frequency range of 200 kHz to 2 MHz. The absorption ratios at equilibrium absorption for PMDA-ODA, BPDA-PDA, and PET were 2.7, 2.5, and 0.5%, respectively. The critical volume fraction of the percolation threshold of electric conductivity due to water absorption was 0.034 for both PMDA-ODA and BPDA-PDA. On the other hand, PET did not show a significant decrease in the resistivity. For both PIs and PET, the dielectric constant observed could be explained by a series model of the respective capacitances of pure water and polymer. Actually, the resistivity of samples cut from the edges of the film after water absorption was almost the same value as that in the dry state. These results suggest that the absorbed water molecules are not uniformly dispersed in the film but are localized at the edges of the film even after the absorption equilibrium has been reached.

4.
J Cancer Res Clin Oncol ; 150(2): 89, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347279

ABSTRACT

PURPOSE: Immune checkpoint inhibitors (ICIs) are ineffective against epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). This study aimed to investigate the clinical characteristics of patients who were treated or not treated with ICIs, and of those who benefit from immunotherapy in EGFR-mutant NSCLC. METHODS: We analyzed patients with unresectable stage III/IV or recurrent NSCLC harboring EGFR mutations using a prospective umbrella-type lung cancer registry (CS-Lung-003). RESULTS: A total of 303 patients who met the eligibility criteria were analyzed. The median age was 69 years; 116 patients were male, 289 had adenocarcinoma, 273 had major mutations, and 67 were treated with ICIs. The duration of EGFR-TKI treatment was longer in the Non-ICI group than in the ICI group (17.1 vs. 12.7 months, p < 0.001). Patients who received ICIs for more than 6 months were categorized into the durable clinical benefit (DCB) group (24 patients), and those who received ICIs for less than 6 months into the Non-DCB group (43 patients). The overall survival in the DCB group exhibited longer than the Non-DCB group (69.3 vs. 47.1 months), and an equivalent compared to that in the Non-ICI group (69.3 vs. 68.9 months). Multivariate analysis for time to next treatment (TTNT) of ICIs showed that a poor PS was associated with a shorter TTNT [hazard ratio (HR) 3.309; p < 0.001]. Patients who were treated with ICIs and chemotherapy combination were associated with a longer TTNT (HR 0.389; p = 0.003). In addition, minor EGFR mutation was associated with a long TTNT (HR 0.450; p = 0.046). CONCLUSION: ICIs were administered to only 22% of patients with EGFR-mutated lung cancer, and they had shorter TTNT of EGFR-TKI compared to other patients. ICI treatment should be avoided in EGFR mutated lung cancer with poor PS but can be considered for lung cancer with EGFR minor mutations. Pathological biomarker to predict long-term responders to ICI are needed.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Male , Aged , Female , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Prospective Studies , Retrospective Studies , Neoplasm Recurrence, Local/drug therapy , ErbB Receptors/genetics , Mutation , Lung/pathology
5.
Angew Chem Int Ed Engl ; 63(9): e202318181, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38179847

ABSTRACT

Heterostructures of two-dimensional materials realise novel and enhanced physical phenomena, making them attractive research targets. Compared to inorganic materials, coordination nanosheets have virtually infinite combinations, leading to tunability of physical properties and are promising candidates for heterostructure fabrication. Although stacking of coordination materials into vertical heterostructures is widely reported, reports of lateral coordination material heterostructures are few. Here we show the successful fabrication of a seamless lateral heterojunction showing diode behaviour, by sequential and spatially limited immersion of a new metalladithiolene coordination nanosheet, Zn3 BHT, into aqueous Cu(II) and Fe(II) solutions. Upon immersion, the Zn centres in insulating Zn3 BHT are replaced by Cu or Fe ions, resulting in conductivity. The transmetallation is spatially confined, occurring only within the immersed area. We anticipate that our results will be a starting point towards exploring transmetallation of various two-dimensional materials to produce lateral heterojunctions, by providing a new and facile synthetic route.

6.
Inorg Chem ; 63(5): 2787-2792, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38266169

ABSTRACT

Adsorbents with hydrophilic and hydrophobic natures were designed by intercalating a bioderived molecule; 4,4'-diammonium-α-truxillic acid (4ATA) and 4,4'-diammonium-α-truxillic acid dimethyl ester (E4ATA), which both are bioderived molecules, into a smectite (purified bentonite) to concentrate o-phenylphenol and biphenyl, respectively, from water. The adsorption isotherm showed high affinity between the 4ATA-smectite hybrid and o-phenylphenol with a high Langmuir constant (0.98 L mg-1). Meanwhile, the E4ATA-smectite hybrid adsorbed biphenyl with a high Langmuir constant (3.61 L mg-1). The adsorption properties of 4ATA- and E4ATA-smectite hybrid were contributed by the chemical characteristics of 4ATA and E4ATA in the interlayer space of the smectite.

7.
Cancer Sci ; 114(11): 4343-4354, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37715310

ABSTRACT

Gilteritinib is a multitarget tyrosine kinase inhibitor (TKI), approved for the treatment of FLT3-mutant acute myeloid leukemia, with a broad range of activity against several tyrosine kinases including anaplastic lymphoma kinase (ALK). This study investigated the efficacy of gilteritinib against ALK-rearranged non-small cell lung cancers (NSCLC). To this end, we assessed the effects of gilteritinib on cell proliferation, apoptosis, and acquired resistance responses in several ALK-rearranged NSCLC cell lines and mouse xenograft tumor models and compared its efficacy to alectinib, a standard ALK inhibitor. Gilteritinib was significantly more potent than alectinib, as it inhibited cell proliferation at a lower dose, with complete attenuation of growth observed in several ALK-rearranged NSCLC cell lines and no development of drug tolerance. Immunoblotting showed that gilteritinib strongly suppressed phosphorylated ALK and its downstream effectors, as well as mesenchymal-epithelial transition factor (MET) signaling. By comparison, MET signaling was enhanced in alectinib-treated cells. Furthermore, gilteritinib was found to more effectively abolish growth of ALK-rearranged NSCLC xenograft tumors, many of which completely receded. Interleukin-15 (IL-15) mRNA levels were elevated in gilteritinib-treated cells, together with a concomitant increase in the infiltration of tumors by natural killer (NK) cells, as assessed by immunohistochemistry. This suggests that IL-15 production along with NK cell infiltration may constitute components of the gilteritinib-mediated antitumor responses in ALK-rearranged NSCLCs. In conclusion, gilteritinib demonstrated significantly improved antitumor efficacy compared with alectinib against ALK-rearranged NSCLC cells, which can warrant its candidacy for use in anticancer regimens, after further examination in clinical trial settings.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Interleukin-15 , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases/genetics
8.
Lung Cancer ; 178: 1-10, 2023 04.
Article in English | MEDLINE | ID: mdl-36753780

ABSTRACT

OBJECTIVES: No immunotherapeutic protocol has yet been established in never-smoking patients with lung cancer harboring driver oncogenic mutations, such as epidermal growth factor receptor (EGFR) mutations. The immunostimulatory effect of Ad-REIC, a genetically engineered adenovirus vector expressing a tumor suppressor gene, reduced expression in immortalized cells (REIC), has been investigated in clinical trials for various solid tumors. However, the immunostimulatory effect of the Ad-REIC in EGFR-mutant lung cancer with a non-inflamed tumor microenvironment (TME) has not been explored. MATERIALS AND METHODS: We used a syngeneic mouse model developed by transplanting Egfr-mutant lung cancer cells into single or double flanks of C57BL/6J mice. Ad-SGE-REIC, a 2nd-generation vector with an enhancer sequence, was injected only into the tumors from one flank, and its antitumor effects were assessed. Tumor-infiltrating cells were evaluated using immunohistochemistry or flow cytometry. The synergistic effects of Ad-SGE-REIC and PD-1 blockade were also examined. RESULTS: Injection of Ad-SGE-REIC into one side of the tumor induced not only a local antitumor effect but also a bystander abscopal effect in the non-injected tumor, located on the other flank. The number of PD-1+CD8+ T cells increased in both injected and non-injected tumors. PD-1 blockade augmented the local and abscopal antitumor effects of Ad-SGE-REIC by increasing the number of CD8+ T cells in the TME of Egfr-mutant tumors. Depletion of CD8+ cells reverted the antitumor effect, suggesting they contribute to antitumor immunity. CONCLUSION: Ad-SGE-REIC induced systemic antitumor immunity by modifying the TME status from non-inflamed to inflamed, with infiltration of CD8+ T cells. Additionally, in Egfr-mutant lung cancer, this effect was enhanced by PD-1 blockade. These findings pave the way to establish a novel combined immunotherapy strategy with Ad-SGE-REIC and anti-PD-1 antibody for lung cancer with a non-inflamed TME.


Subject(s)
Lung Neoplasms , Animals , Mice , Humans , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Lung Neoplasms/pathology , CD8-Positive T-Lymphocytes/pathology , Adaptor Proteins, Signal Transducing , Mice, Inbred C57BL , ErbB Receptors/genetics , Cell Line, Tumor , Tumor Microenvironment
9.
Polymers (Basel) ; 15(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36679222

ABSTRACT

Bio-based polyureas (PUs) with main-chain furan rings were synthesized by the polyaddition of 2,5-bis(aminomethyl)furan with various diisocyanates, such as methylene diphenyl diisocyanate. Several PU's were soluble in polar organic solvents, and were cast to form thermomechanically stable films with softening temperatures of over 100 °C. The furan rings of the PU main chains underwent a dynamic Diels-Alder (DA) reaction with bismaleimide (BMI) cross-linkers. While the mixed solution of PU and BMI did not show any apparent signs of reaction at room temperature, the DA reaction proceeded to form gels upon heating to 60 °C, which became a solution again by further heating to 80 °C (retro-DA reaction). The solution phase was maintained by rapid quenching from 80 °C to room temperature, while the gel was reformed upon slow cooling. The recovered gels exhibited self-healing properties. A scratch made by a hot knife at temperatures above 80 °C disappeared spontaneously. When two different gels were cut using a knife at room temperature, placed in contact with each other, and heated to 60 °C, they fused. The ability to control the DA/retro-DA reaction allowed gels of varying composition to heal.

10.
Polymers (Basel) ; 16(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38201745

ABSTRACT

The mechanical properties for paper sheets composited with glucose (Glc), methyl cellulose (MC), and carboxymethyl cellulose (CMC) were investigated. The paper composites were prepared by immersing paper sheets in aqueous solutions of these materials and drying at 100 °C for 30 min. The stress-strain curves for these paper composites were measured by a uniaxial tensile apparatus with a stretching speed of 2 mm/min. The breaking stress and strain for untreated paper were 24 MPa and 0.016, respectively. The paper composites demonstrated stress-strain curves similar to the untreated paper; however, the breaking point largely differed for these composites. The breaking strain and breaking stress for the Glc composite slightly decreased and those for the MC composite gradually increased with the concentration of materials composited. Significant increases in the mechanical properties were observed for the CMC composite. The breaking stress, breaking strain, and breaking energy for the 3 wt.% CMC composite were 2.0-, 3.9-, and 8.0-fold higher than those for untreated paper, respectively. SEM photographs indicated that the CMC penetrated into the inner part of the paper. These results strongly suggest that the mechanical improvement for CMC composites can be understood as an enhancement of the bond strength between the paper fibrils by CMC, which acts as a bonding agent. It was also revealed that the breaking strain, breaking stress, and breaking energy for the CMC composites were at maximum at the first cycle and decreased gradually as the immersion cycles increased.

11.
Sci Rep ; 12(1): 18557, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329131

ABSTRACT

Evidence regarding the possible influence of nutritional status on the facial morphology has thus far been insufficient. We examined whether or not the physical body compositions and dietary behaviors were correlated with any morphological characteristics of the face. One hundred and fifteen young Japanese women participated. Variables representing the dietary behaviors were extracted from self-reported survey data, and corresponding three-dimensional (3D) facial images and body compositions were examined. Multivariate analyses identified significant relationships between the nutritional status and facial topography (p < 0.05). The clustering method revealed the existence of three dietary condition patterns ("balanced diet", "high-calorie-diet" with obesity tendency, and "imbalanced low-calorie-diet" with sarcopenic obesity tendency). Among these three patterns, a round face (increased facial width; analysis of variance [ANOVA], p < 0.05) was observed in the high-calorie-diet pattern, while the imbalanced low-calorie-diet pattern showed a more masculine face (increased face height, decreased eye height, increased non-allometric sexual shape differences; ANOVA, p < 0.05), thus suggesting the possibility of sex-hormonal influences. In summary, the body composition and dietary behaviors were found to influence the facial morphology, and potential biological influences were discussed.


Subject(s)
Face , Nutritional Status , Humans , Female , Face/anatomy & histology , Japan , Imaging, Three-Dimensional/methods , Obesity
12.
Int J Dent ; 2022: 5340301, 2022.
Article in English | MEDLINE | ID: mdl-36065399

ABSTRACT

Background: The vascularity index (VI) is useful for measuring the hemodynamics on ultrasound imaging. However, there are no reports concerning the application of the VI to facial muscles. Objective: The aim of this study was (1) to establish a method of measuring the hemodynamics in facial muscles in a constant way and (2) to evaluate the hemodynamic changes in the masseter and superior orbicularis oris muscles (SOOMs) before and after exercise load in two subject groups of females of different ages. Methods: (1) The VI in the SOOM was calculated, and the test-retest reliability was assessed in seven healthy adults. (2) The VIs in the left-side masseter and SOOM were calculated in 3 sessions: before exercise loading (T0), immediately after loading (T1), and 5 minutes after T1 (T2) for the young adult group (YAG, n = 20; age range, 20-35 years) and the middle-aged to old group (MOG, n = 20; age range, 50-70 years). Tasks were gum chewing for the masseter muscle and lip sealing for the SOOM. The differences in the mean peak flows between two sessions were examined. Results: (1) Significant differences were not noted for the repeatedly measured average volumes of blood flow with good test-retest agreement (intraclass correlation coefficient = 0.81). (2) In both muscles of the YAG, there were a significant increase in T1 compared with T0 and a significant decrease in T2 compared with T1 (all p < 0.05). In both muscles of the MOG, no significant differences were noted in either comparison. Conclusions: A method of measuring the hemodynamics in facial muscles was developed and showed good reliability. Changes in the blood flow after exercise load in these muscles may vary with age in women.

13.
Chemistry ; 28(44): e202202128, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35866487

ABSTRACT

Invited for the cover of this issue is the group of Hiroshi Nishihara at Tokyo University of Science. The image depicts the moment of the growth of the second layer at the liquid-liquid interface to form a heterolaminated film. Read the full text of the article at 10.1002/chem.202201316.

14.
Chemistry ; 28(44): e202201316, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35695303

ABSTRACT

Recent studies on molecular 2D materials with high tunability of structure and function have focused mostly on the discovery of new precursors. Here, we demonstrate a facile one-pot synthesis of laminated 2D coordination polymer films comprising bis(terpyridine)iron and cobalt at a water/dichloromethane interface. Cross-sectional elemental mapping unveiled the stratum-like structure of the film and revealed that the second layer grows to the dichloromethane side below the first layer. Cyclic voltammetry clarified that the bottom layer mediates charge transfer between the top layer and the substrate in a narrow potential region of mixed-valence states. Furthermore, the bilayer film sandwiched by electrodes in a dry condition shows stable rectification character, and the barrier voltage corresponds to the redox potential difference between the two layers. This study introduces a new strategy for polymer design to explore the materials science of molecular 2D materials.

15.
Biosci Biotechnol Biochem ; 86(8): 1114-1121, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35612977

ABSTRACT

The aromatic diamine 2-(4-aminophenyl)ethylamine (4APEA) is a potential monomer for polymers and advanced materials. Here, 4APEA was produced by fermentation using genetically engineered Escherichia coli (Masuo et al.2016). Optimizing fed-batch cultures of this strain produced the highest reported yield to date of 4APEA (7.2%; 3.5 g/L versus glucose) within 72 h. Appropriate aeration was important to maximize production and avoid unfavorable 4APEA degradation. Fermented 4APEA was purified from culture medium and polymerized with methylene diphenyldiisocyanate and hexamethylene diisocyanate to produce polyureas PU-1 and PU-2, respectively. The decomposition temperatures for 10% weight loss (Td10) of PU-1 and PU-2 were 276 °C and 302 °C, respectively, and were comparable with that of other thermostable aromatic polyureas. This study is the first to synthesize polyureas from the microbial aromatic diamine. Their excellent thermostability will be useful for the industrial production of heat-resistant polymer materials.


Subject(s)
Escherichia coli , Hot Temperature , Diamines/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Glucose/metabolism , Metabolic Engineering , Phenethylamines
16.
RSC Adv ; 12(19): 11885-11895, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35481076

ABSTRACT

Bio-based polymer materials having great potential due to the depletion of fossil-fuel resources have been applied as single-use and medicinal materials but their low thermomechanical resistance have limited wider applications. Here, ultrahigh thermoresistant bio-based terpolymers with a low dielectric constant, comprising polybenzimidazole and poly(benzoxazole-random-aramid), were prepared by a method involving stepwise polycondensation of three monomers, 3,4-diaminobenzoic acid for benzimidazoles, 3-amino-4-hydroxylbenzoic acid for benzoxazoles, and 4-aminobenzoic acid for aramids. For optimized monomer compositions, the obtained terpolymers exhibited dielectric constants lower than 3, and a 10% mass loss at approximately 760 °C which is a temperature higher than that for any other polymer material reported so far. The high thermal degradation temperatures of the prepared terpolymers were a result of the high interaction enthalpies of hydrogen bonding between imidazole rings in the polymer chains, which were obtained from density functional theory calculations using trimer models. Furthermore, the applicability of the prepared terpolymers as a wire-coating material for a simple motor insulation was demonstrated, indicating that it has significant potential to be used as a thermostable material with a low dielectric constant (k).

17.
Adv Mater ; 34(13): e2106204, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35040527

ABSTRACT

Coordination nanosheets are an emerging class of 2D, bottom-up materials having fully π-conjugated, planar, graphite-like structures with high electrical conductivities. Since their discovery, great effort has been devoted to expand the variety of coordination nanosheets; however, in most cases, their low crystallinity in thick films hampers practical device applications. In this study, mixtures of nickel and copper ions are employed to fabricate benzenehexathiolato (BHT)-based coordination nanosheet films, and serendipitously, it is found that this heterometallicity preferentially forms a structural phase with improved film crystallinity. Spectroscopic and scattering measurements provide evidence for a bilayer structure with in-plane periodic arrangement of copper and nickel ions with the NiCu2 BHT formula. Compared with homometallic films, heterometallic films exhibit more crystalline microstructures with larger and more oriented grains, achieving higher electrical conductivities reaching metallic behaviors. Low dependency of Seebeck coefficient on the mixing ratio of nickel and copper ions supports that the large variation in the conductivity data is not caused by change in the intrinsic properties of the films. The findings open new pathways to improve crystallinity and to tune functional properties of 2D coordination nanosheets.

18.
Bioresour Technol ; 344(Pt B): 126165, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34695585

ABSTRACT

Lignocellulosic biomass has great potential as an inedible feedstock for bioplastic synthesis, although its use is still limited compared to current edible feedstocks of glucose and starch. This review focuses on recent advances in the production of biopolymers and biomonomers from lignocellulosic feedstocks with downstream processing and chemical polymer syntheses. In microbial production, four routes composed of existing poly (lactic acid) and polyhydroxyalkanoates (PHAs) and the emerging biomonomers of itaconic acid and aromatic compounds were presented to review present challenges and future perspectives, focusing on the use of lignocellulosic feedstocks. Recently, advances in purification technologies decreased the number of processes and their environmental burden. Additionally, the unique structures and high-performance of emerging lignocellulose-based bioplastics have expanded the possibilities for the use of bioplastics. The sequence of processes provides insight into the emerging technologies that are needed for the practical use of bioplastics made from lignocellulosic biomass.


Subject(s)
Lignin , Polyhydroxyalkanoates , Biomass , Biotechnology , Starch
19.
Langmuir ; 38(17): 5128-5134, 2022 05 03.
Article in English | MEDLINE | ID: mdl-34918512

ABSTRACT

Nanomembranes are effective coating materials for protecting substrates from external stimuli; however, they are generally not self-standing owing to their low mechanical toughness. Self-standing nanomembranes would be an innovative development in the field of nanotechnology including miniaturized devices. In this study, self-standing nanomembranes were developed by spin-casting supertough polyamides over dimethylformamide solution. The polyamides were synthesized by the polycondensation of two derivatives of 4,4'-diamino-α-truxillic acid (4ATA) with slightly bent diphenylcyclobutane in the core. Mechanical evaluation of the 4ATA polyamides having an appropriate composition of aliphatic diacids revealed a high strain-energy density of 231 MJ m-3 at its maximum, which is significantly tougher than spider silk. The nanocoats with a thickness of several hundred nanometers showing interference fringes were able to be peeled off the glass substrate without breaking, owing to its ultrahigh toughness. The self-standing nanomembrane would be applied to flexible devices in the future.


Subject(s)
Nylons , Plastics , Nanotechnology , Silk/chemistry
20.
Sci Adv ; 7(32)2021 Aug.
Article in English | MEDLINE | ID: mdl-34362728

ABSTRACT

Microscopic observation of single molecules is a rapidly expanding field in chemistry and differs from conventional characterization techniques that require a large number of molecules. One of such form of single-molecule microscopy is high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), which is especially suitable for coordination compounds because of its atomic number-dependent contrast. However, to date, single-molecule observations using HAADF-STEM has limited to simple planar molecules. In the present study, we demonstrate a direct structural investigation of nonplanar dendronized polynuclear Ir complexes with subnanometer resolution using Ir as an atomic label. Decreasing the electron dose to the dendrimer complexes is critical for the single-molecule observation. A comparison with simulated STEM images of conformational isomers is performed to determine the most plausible conformation. Our results enlarge the potential of electron microscopic observation to realize structural analysis of coordination macromolecules, which has been impossible with conventional methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...