Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 10554, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794117

ABSTRACT

Climate change may disrupt species-species interactions via phenological changes in one or both species. To predict and evaluate the influence of climate change on these interactions, long-term monitoring and sampling over large spatial areas are required; however, funding and labor constraints limit data collection. In this study, we predict and evaluate the plant-insect interactions with limited data sets. We examined plant-insect interaction using observational data for development of the crop plant rice (Oryza sativa) and an effective accumulated temperature (EAT) model of two mirid bugs (Stenotus rubrovittatus and Trigonotylus caelestialium). We combined 11 years of records monitoring rice phenology and the predicted phenology of mirid bugs using spatially-explicit EAT models based on both spatially and temporally high resolutions temperature data sets, then evaluated their accuracy using actual pest damage records. Our results showed that the predicted interactions between rice and mirid bugs explained rice damage to some degree. Our approach may apply predicting changes to plant-insect interactions under climate change. As such, combining plant monitoring records and theoretical predictions of insect phenology may be effective for predicting species-species interactions when available data are limited.


Subject(s)
Heteroptera , Oryza , Animals , Climate Change , Insecta , Plants , Temperature
2.
Sci Rep ; 12(1): 11051, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35817828

ABSTRACT

Understanding of pollination systems is an important topic for evolutionary ecology, food production, and biodiversity conservation. However, it is difficult to grasp the whole picture of an individual system, because the activity of pollinators fluctuates depending on the flowering period and time of day. In order to reveal effective pollinator taxa and timing of visitation to the reproductive success of plants under the complex biological interactions and fluctuating abiotic factors, we developed an automatic system to take photographs at 5-s intervals to get near-complete flower visitation by pollinators during the entire flowering period of selected flowers of Nelumbo nucifera and track the reproductive success of the same flowers until fruiting. Bee visits during the early morning hours of 05:00-07:59 on the second day of flowering under optimal temperatures with no rainfall or strong winds contributed strongly to seed set, with possible indirect negative effects by predators of the pollinators. Our results indicate the availability of periodic and consecutive photography system in clarifying the plant-pollinator interaction and its consequence to reproductive success of the plant. Further development is required to build a monitoring system to collect higher-resolution time-lapse images and automatically identify visiting insect species in the natural environment.


Subject(s)
Lotus , Pollination , Animals , Bees , Flowers , Insecta , Photography , Seeds
3.
Ecol Evol ; 11(23): 16936-16950, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938483

ABSTRACT

The mirid bugs Stenotus rubrovittatus and Trigonotylus caelestialium, which cause pecky rice, have become a threat to rice cultivation in Asia. Damage caused by these pests has rapidly become frequent since around 2000 in Japan. Their expansion pattern is not simple, and predicting their future spread remains challenging. Some insects with wide ranges have locally adapted variations in life-history traits. We performed laboratory rearing experiments to assess the geographical scale of intraspecific variations in life-history traits of S. rubrovittatus and T. caelestialium. The experiments were aimed at increasing the accuracy of occurrence estimates and the number of generations per year. These results were compared with previous research, and differences in development rates were observed between populations of different latitudes, but not of the same latitude. Finally, plotting the timing of adult emergence and the potential number of generations per year on maps with a 5-km grid revealed that they differed greatly locally at the same latitude. These maps can be used for developing more efficient methods of managing mirid bugs in integrated pest management.

4.
Ecol Evol ; 11(21): 15303-15311, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765179

ABSTRACT

Conflicts arising from the consumption of anthropogenic foods by wildlife are increasing worldwide. Conventional tools for evaluating the spatial distribution pattern of large terrestrial mammals that consume anthropogenic foods have various limitations, despite their importance in management to mitigate conflicts. In this study, we examined the spatial distribution pattern of crop-foraging sika deer by performing nitrogen stable isotope analyses of bone collagen. We evaluated whether crop-foraging deer lived closer to agricultural crop fields during the winter and spring, when crop production decreases. We found that female deer in proximity to agricultural crop fields during the winter and spring were more likely to be crop-foraging individuals. Furthermore, the likelihood of crop consumption by females decreased by half as the distance to agricultural crop fields increased to 5-10 km. We did not detect a significant trend in the spatial distribution of crop-foraging male deer. The findings of spatial distribution patterns of crop-foraging female deer will be useful for the establishment of management areas, such as zonation, for efficient removal of them.

5.
Ambio ; 47(7): 806-815, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29476329

ABSTRACT

Detecting dispersal pathways is important both for understanding species range expansion and for managing nuisance species. However, direct detection is difficult. Here, we propose detecting these crucial pathways using a virtual ecology approach, simulating species dynamics using models, and virtual observations. As a case study, we developed a dispersal model based on cellular automata for the pest insect Stenotus rubrovittatus and simulated its expansion. We tested models for species expansion based on four landscape parameters as candidate pathways; these are river density, road density, area of paddy fields, and area of abandoned farmland, and validated their accuracy. We found that both road density and abandoned area models had prediction accuracy. The simulation requires simple data only to have predictive power, allowing for fast modeling and swift establishment of management plans.


Subject(s)
Animal Distribution , Ecosystem , Heteroptera/physiology , Agriculture , Animals , Biodiversity , Computer Simulation , Farms , Japan , Models, Theoretical , Oryza , Pest Control/methods , Population Dynamics , Rivers , Snow
6.
Springerplus ; 3: 418, 2014.
Article in English | MEDLINE | ID: mdl-25140294

ABSTRACT

Winter-flooding of rice paddies without the application of agricultural chemicals is attracting attention as a new agricultural method for enhancing the habitat conditions of wintering waterfowl in rice paddy ecosystems throughout Japan and east Asia. Conditions in these paddies are expected to result in restoration of not only the winter habitats of waterfowl but also those of other taxonomic groups during the rice growing season. In this study, we tested whether the diversity of summer spiders--ubiquitous predators in rice paddies--was higher in the winter-flooded paddies than in the conventional ones by conducting field measurements in 31 winter-flooded and 7 conventional paddies. Limiting factors of spiders in the winter-flooded paddies were then examined. Results revealed that both the density and species richness of spiders were significantly higher in the winter-flooded paddies than in the conventional ones both before and after the insecticide application against pecky rice bug Stenotus rubrovittatus (Matsumura)(Hemiptera: Miridae) to conventional paddies. In addition, spider density and species richness in the winter-flooded paddies correlated with the availability of two prey groups--chironomids and other nematocera. These findings suggest that in the winter-flooded paddies the diversity of generalist predators is higher than in the conventional ones during the rice-growing season and that the combination of management at both the landscape and field level is likely more effective for increasing spider abundance in winter-flooded paddies.

7.
J Anim Ecol ; 83(5): 1047-56, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24520959

ABSTRACT

Landscapes in nature can be viewed as a continuum of small total habitable area with high fragmentation to widely spreading habitats. The dispersal-mediated rescue effect predominates in the former landscapes, while classical density-dependent processes generally prevail in widely spread habitats. A similar principle should be applied to populations of organisms utilizing microhabitats in limited supply. To test this hypothesis, we examined the population dynamics of a web spider, Neriene brongersmai, in 16 populations with varying degrees of microhabitat availability, and we explored whether: (i) high microhabitat availability improves survival rate during density-independent movement, while the resultant high density reduces survival rate in a density-dependent manner; and (ii) temporal population stability increases with microhabitat availability at the population level. Furthermore, we conducted two types of field experiments to verify whether high microhabitat availability actually reduces mortality associated with web-site movement. Field observations revealed that demographic change in N. brongersmai populations was affected by three factors at different stages, namely the microhabitat limitation from the early to late juvenile stages, the density dependence from the late juvenile to adult stages and the food limitation from the adult to the next early juvenile stages. In addition, there was a tendency for a positive association between population stability and microhabitat availability at the population level. A small-scale experiment, where the frequency of spider web relocation was equalized artificially, revealed that high microhabitat availability elevated the survival rate during a movement event between web-sites. The larger spatiotemporal scale experiment also revealed an improved spider survival rate following treatment with high microhabitat availability, even though spider density was kept at a relatively low level. The population dynamics of N. brongersmai can be determined primarily by density-independent processes based on web-site fragmentation and density-dependent processes driven by interference competition. We conclude that depending on the amount of habitat resources, the relative importance of the two contrasting paradigms-equilibrium and non-equilibrium-appears to vary, even within a particular system.


Subject(s)
Animal Distribution , Ecosystem , Life Cycle Stages , Spiders/physiology , Animals , Female , Forests , Japan , Population Density , Population Dynamics , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...