Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Biochem Biophys Res Commun ; 721: 150126, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38776832

ABSTRACT

Voltage-gated sodium channel subtypes, Nav1.7, Nav1.8, and Nav1.9 are predominantly expressed in peripheral sensory neurons. Recent genetic studies have revealed that they are involved in pathological pain processing and that the blockade of Nav1.7, Nav1.8, or Nav1.9 will become a promising pharmacotherapy especially for neuropathic pain. A growing number of drug discovery programs have targeted either of the subtypes to obtain a selective inhibitor which can provide pain relief without affecting the cardiovascular and central nervous systems, though none of them has been approved yet. Here we describe the in vitro characteristics of ANP-230, a novel sodium channel blocker under clinical development. Surprisingly, ANP-230 was shown to block three pain-related subtypes, human Nav1.7, Nav1.8, and Nav1.9 with similar potency, but had only low inhibitory activity to human cardiac Nav1.5 channel and rat central Nav channels. The voltage clamp experiments using different step pulse protocols revealed that ANP-230 had a "tonic block" mode of action without state- and use-dependency. In addition, ANP-230 caused a depolarizing shift of the activation curve and decelerated gating kinetics in human Nav1.7-stably expressing cells. The depolarizing shift of activation curve was commonly observed in human Nav1.8-stably expressing cells as well as rat dorsal root ganglion neurons. These data suggested a quite unique mechanism of Nav channel inhibition by ANP-230. Finally, ANP-230 reduced excitability of rat dorsal root ganglion neurons in a concentration dependent manner. Collectively, these promising results indicate that ANP-230 could be a potent drug for neuropathic pain.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , NAV1.8 Voltage-Gated Sodium Channel , NAV1.9 Voltage-Gated Sodium Channel , Sodium Channel Blockers , Humans , NAV1.8 Voltage-Gated Sodium Channel/metabolism , NAV1.8 Voltage-Gated Sodium Channel/genetics , Animals , Rats , NAV1.9 Voltage-Gated Sodium Channel/metabolism , NAV1.9 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , Sodium Channel Blockers/pharmacology , HEK293 Cells , Voltage-Gated Sodium Channel Blockers/pharmacology , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Ganglia, Spinal/cytology
2.
J Biol Chem ; 292(22): 9365-9381, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28377503

ABSTRACT

Voltage-dependent Ca2+ channels (VDCCs) mediate neurotransmitter release controlled by presynaptic proteins such as the scaffolding proteins Rab3-interacting molecules (RIMs). RIMs confer sustained activity and anchoring of synaptic vesicles to the VDCCs. Multiple sites on the VDCC α1 and ß subunits have been reported to mediate the RIMs-VDCC interaction, but their significance is unclear. Because alternative splicing of exons 44 and 47 in the P/Q-type VDCC α1 subunit CaV2.1 gene generates major variants of the CaV2.1 C-terminal region, known for associating with presynaptic proteins, we focused here on the protein regions encoded by these two exons. Co-immunoprecipitation experiments indicated that the C-terminal domain (CTD) encoded by CaV2.1 exons 40-47 interacts with the α-RIMs, RIM1α and RIM2α, and this interaction was abolished by alternative splicing that deletes the protein regions encoded by exons 44 and 47. Electrophysiological characterization of VDCC currents revealed that the suppressive effect of RIM2α on voltage-dependent inactivation (VDI) was stronger than that of RIM1α for the CaV2.1 variant containing the region encoded by exons 44 and 47. Importantly, in the CaV2.1 variant in which exons 44 and 47 were deleted, strong RIM2α-mediated VDI suppression was attenuated to a level comparable with that of RIM1α-mediated VDI suppression, which was unaffected by the exclusion of exons 44 and 47. Studies of deletion mutants of the exon 47 region identified 17 amino acid residues on the C-terminal side of a polyglutamine stretch as being essential for the potentiated VDI suppression characteristic of RIM2α. These results suggest that the interactions of the CaV2.1 CTD with RIMs enable CaV2.1 proteins to distinguish α-RIM isoforms in VDI suppression of P/Q-type VDCC currents.


Subject(s)
Calcium Channels, N-Type/metabolism , Calcium Channels/metabolism , GTP-Binding Proteins/metabolism , Nerve Tissue Proteins/metabolism , Animals , Calcium Channels/genetics , Calcium Channels, N-Type/genetics , GTP-Binding Proteins/genetics , HEK293 Cells , Humans , Mice , Nerve Tissue Proteins/genetics , Protein Domains
3.
Mol Pharmacol ; 89(3): 348-63, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26733543

ABSTRACT

Transient receptor potential canonical (TRPC) proteins form Ca(2+)-permeable cation channels activated upon stimulation of metabotropic receptors coupled to phospholipase C. Among the TRPC subfamily, TRPC3 and TRPC6 channels activated directly by diacylglycerol (DAG) play important roles in brain-derived neurotrophic factor (BDNF) signaling, promoting neuronal development and survival. In various disease models, BDNF restores neurologic deficits, but its therapeutic potential is limited by its poor pharmacokinetic profile. Elucidation of a framework for designing small molecules, which elicit BDNF-like activity via TRPC3 and TRPC6, establishes a solid basis to overcome this limitation. We discovered, through library screening, a group of piperazine-derived compounds that activate DAG-activated TRPC3/TRPC6/TRPC7 channels. The compounds [4-(5-chloro-2-methylphenyl)piperazin-1-yl](3-fluorophenyl)methanone (PPZ1) and 2-[4-(2,3-dimethylphenyl)piperazin-1-yl]-N-(2-ethoxyphenyl)acetamide (PPZ2) activated, in a dose-dependent manner, recombinant TRPC3/TRPC6/TRPC7 channels, but not other TRPCs, in human embryonic kidney cells. PPZ2 activated native TRPC6-like channels in smooth muscle cells isolated from rabbit portal vein. Also, PPZ2 evoked cation currents and Ca(2+) influx in rat cultured central neurons. Strikingly, both compounds induced BDNF-like neurite growth and neuroprotection, which were abolished by a knockdown or inhibition of TRPC3/TRPC6/TRPC7 in cultured neurons. Inhibitors of Ca(2+) signaling pathways, except calcineurin, impaired neurite outgrowth promotion induced by PPZ compounds. PPZ2 increased activation of the Ca(2+)-dependent transcription factor, cAMP response element-binding protein. These findings suggest that Ca(2+) signaling mediated by activation of DAG-activated TRPC channels underlies neurotrophic effects of PPZ compounds. Thus, piperazine-derived activators of DAG-activated TRPC channels provide important insights for future development of a new class of synthetic neurotrophic drugs.


Subject(s)
Nerve Growth Factors/metabolism , Piperazines/metabolism , TRPC Cation Channels/metabolism , Animals , Calcium Signaling/drug effects , Calcium Signaling/physiology , Drug Evaluation, Preclinical/methods , Female , HEK293 Cells , Humans , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Nerve Growth Factors/chemistry , Nerve Growth Factors/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Rabbits , Rats , Rats, Wistar , TRPC Cation Channels/agonists
4.
Cell Calcium ; 58(3): 296-306, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26142343

ABSTRACT

Autism is a neurodevelopmental psychiatric disorder characterized by impaired reciprocal social interaction, disrupted communication, and restricted and stereotyped patterns of interests. Autism is known to have a strong genetic component. Although mutations in several genes account for only a small proportion of individuals with autism, they provide insight into potential biological mechanisms that underlie autism, such as dysfunction in Ca(2+) signaling, synaptic dysfunction, and abnormal brain connectivity. In autism patients, two mutations have been reported in the Rab3 interacting molecule 3 (RIM3) gene. We have previously demonstrated that RIM3 physically and functionally interacts with voltage-dependent Ca(2+) channels (VDCCs) expressed in neurons via the ß subunits, and increases neurotransmitter release. Here, by introducing corresponding autism-associated mutations that replace glutamic acid residue 176 with alanine (E176A) and methionine residue 259 with valine (M259V) into the C2B domain of mouse RIM3, we demonstrate that both mutations partly cancel the suppressive RIM3 effect on voltage-dependent inactivation of Ba(2+) currents through P/Q-type CaV2.1 recombinantly expressed in HEK293 cells. In recombinant N-type CaV2.2 VDCCs, the attenuation of the suppressive RIM3 effect on voltage-dependent inactivation is conserved for M259V but not E176A. Slowing of activation speed of P/Q-type CaV2.1 currents by RIM3 is abolished in E176A, while the physical interaction between RIM3 and ß subunits is significantly attenuated in M259V. Moreover, increases by RIM3 in depolarization-induced Ca(2+) influx and acetylcholine release are significantly attenuated by E176A in rat pheochromocytoma PC12 cells. Thus, our data raise the interesting possibility that autism phenotypes are elicited by synaptic dysfunction via altered regulation of presynaptic VDCC function and neurotransmitter release.


Subject(s)
Autistic Disorder/genetics , Calcium Channels/metabolism , Calcium Signaling , Mutation , Animals , Autistic Disorder/metabolism , Calcium Signaling/genetics , Guanine Nucleotide Exchange Factors , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Neurons/physiology , PC12 Cells , Rats
5.
Curr Top Med Chem ; 13(3): 322-34, 2013.
Article in English | MEDLINE | ID: mdl-23432063

ABSTRACT

Neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis present a significant medical challenge in the modern world. Recent evidence indicates that perturbation of neuronal Ca2+ homeostasis is involved in the pathogenesis of these neurodegenerative disorders. Transient receptor potential (TRP) channels are non-selective cation channels that are expressed in various cell types and tissues, and play an important role in regulating Ca2+ signaling in both non-neuronal and neuronal cells. TRP channels are related to the onset or progression of several diseases, and defects in the genes encoding TRP channels (so-called "TRP channelopathies") underlie certain neurodegenerative disorders due to their abnormal Ca2+ signaling properties. In this article, we review recent findings regarding the relationship between TRPs and neurodegenerative disorders, and discuss the therapeutic potential of targeting TRP channels pharmacologically.


Subject(s)
Neurodegenerative Diseases/drug therapy , Transient Receptor Potential Channels/antagonists & inhibitors , Animals , Calcium/metabolism , Humans , Molecular Targeted Therapy , Neurodegenerative Diseases/metabolism , Signal Transduction/drug effects , Transient Receptor Potential Channels/metabolism
6.
J Biochem ; 152(2): 149-59, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22577167

ABSTRACT

In the nerve terminals, the active zone protein CAST/ERC2 forms a protein complex with the other active zone proteins ELKS, Bassoon, Piccolo, RIM1 and Munc13-1, and is thought to play an organizational and functional role in neurotransmitter release. However, it remains obscure how CAST/ERC2 regulates the Ca(2+)-dependent release of neurotransmitters. Here, we show an interaction of CAST with voltage-dependent Ca(2+) channels (VDCCs), which are essential for regulating neurotransmitter release triggered by depolarization-induced Ca(2+) influx at the active zone. Using a biochemical assay, we showed that CAST was coimmunoprecipitated with the VDCC ß(4)-subunit from the mouse brain. A pull-down assay revealed that the VDCC ß(4)-subunit interacted directly with at least the N- and C-terminal regions of CAST. The II-III linker of VDCC α(1)-subunit also interacted with C-terminal regions of CAST; however, the interaction was much weaker than that of ß(4)-subunit. Furthermore, coexpression of CAST and VDCCs in baby hamster kidney cells caused a shift in the voltage dependence of activation towards the hyperpolarizing direction. Taken together, these results suggest that CAST forms a protein complex with VDCCs, which may regulate neurotransmitter release partly through modifying the opening of VDCCs at the presynaptic active zones.


Subject(s)
Brain/metabolism , Calcium Channels/metabolism , Cytoskeletal Proteins/metabolism , Animals , Calcium Channels, L-Type/metabolism , Cells, Cultured , Cricetinae , Cytoskeletal Proteins/genetics , Humans , Mice , Neurotransmitter Agents/metabolism , Protein Subunits , Synapses/metabolism
7.
Brain Nerve ; 63(7): 657-67, 2011 Jul.
Article in Japanese | MEDLINE | ID: mdl-21747135

ABSTRACT

Calcium ions (Ca2+) play important roles as secondary messengers in the body. The intracellular Ca2+ concentration is increased via 2 mechanisms: (1) is an influx of external Ca2+ and (2) Ca2+ release from the endoplasmic reticulum. Ca2+ influx across the plasma membrane involves 3 main types of channels: voltage-dependent calcium channels (VDCCs), ligand-gated calcium channels, and transient receptor potential (TRP) channels. VDCCs are activated by depolarization of membrane potential. VDDC-mediated Ca2+ signaling is essential for neurotransmitter release, synaptic plasticity, and gene transcription. The TRP family comprises at least 28 cation channels, most of which are permeable to Ca2+. TRP channels function as cellular sensors and are activated by various chemical and physical stimuli. In the nervous system, Ca2+ signaling via TRP channels is important for neuronal growth, development, survival, and cell death. In this review, we discuss how Ca2+ signaling via VDCCs and TRP channels mediates various neuronal processes.


Subject(s)
Calcium Channels/physiology , Signal Transduction/physiology , Transient Receptor Potential Channels/physiology , Animals , Humans , Neurons/physiology , Transcription, Genetic/physiology
8.
Respirology ; 12(4): 566-72, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17587424

ABSTRACT

BACKGROUND AND OBJECTIVE: Inhaled corticosteroids are recommended as first-line therapy for the management of asthma, although side-effects may limit their use. Ciclesonide, a novel pro-drug inhaled corticosteroid, exerts potent and prolonged local anti-inflammatory effects in the lungs, and is considered to have an improved safety and tolerability profile. The aim of this study was to evaluate the efficacy and safety of ciclesonide in adult patients with mild to moderate asthma. METHODS: A placebo-controlled, multicentre, randomized, double-blind, parallel-group study was conducted. During the 4-week baseline period, patients were given 400 microg/day of beclomethasone dipropionate in a chlorofluorocarbon formulation. After the baseline period, 311 patients were given once-daily 100, 200 or 400 microg of ciclesonide or placebo for an 8-week treatment period without the use of a spacer. The primary efficacy variable was morning PEF. RESULTS: Changes in the morning PEF (least squares mean) at the end of the study were 4.23 L/min (P < 0.001) in the 100 microg group, 3.75 L/min (P < 0.001) in the 200 microg group, -0.40 L/min (P < 0.001) in the 400 microg group, as compared with -24.95 L/min in the placebo group. In the ciclesonide groups, the PEF remained at the same level as the baseline period. No large differences were observed between the placebo group and the ciclesonide groups regarding safety. CONCLUSION: Once-daily administration of ciclesonide at doses of 100, 200 or 400 microg was shown to be effective in adult patients with mild to moderate asthma. Ciclesonide is considered to have favourable safety profiles and be well tolerated.


Subject(s)
Anti-Allergic Agents/administration & dosage , Anti-Asthmatic Agents/administration & dosage , Asthma/drug therapy , Pregnenediones/administration & dosage , Administration, Inhalation , Adolescent , Adult , Aged , Beclomethasone/administration & dosage , Dose-Response Relationship, Drug , Double-Blind Method , Female , Forced Expiratory Volume , Humans , Least-Squares Analysis , Male , Spirometry , Vital Capacity
SELECTION OF CITATIONS
SEARCH DETAIL
...