Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 5(10): 1055-62, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25188794

ABSTRACT

Histone deacetylase (HDAC) enzymes have been demonstrated as critical components in maintaining chromatin homeostasis, CNS development, and normal brain function. Evidence in mouse models links HDAC expression to learning, memory, and mood-related behaviors; small molecule HDAC inhibitor tool compounds have been used to demonstrate the importance of specific HDAC subtypes in modulating CNS-disease-related behaviors in rodents. So far, no direct evidence exists to understand the quantitative changes in HDAC target engagement that are necessary to alter biochemistry and behavior in a living animal. Understanding the relationship between target engagement and in vivo effect is essential in refining new ways to alleviate disease. We describe here, using positron emission tomography (PET) imaging of rat brain, the in vivo target engagement of a subset of class I/IIb HDAC enzymes implicated in CNS-disease (HDAC subtypes 1, 2, 3, and 6). We found marked differences in the brain penetrance of tool compounds from the hydroxamate and benzamide HDAC inhibitor classes and resolved a novel, highly brain penetrant benzamide, CN147, chronic treatment with which resulted in an antidepressant-like effect in a rat behavioral test. Our work highlights a new translational path for understanding the molecular and behavioral consequences of HDAC target engagement.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Positron-Emission Tomography/methods , Animals , Antidepressive Agents/pharmacokinetics , Antidepressive Agents/pharmacology , Benzamides/pharmacokinetics , Benzamides/pharmacology , Carbon Radioisotopes , Depressive Disorder/drug therapy , Depressive Disorder/physiopathology , Disease Models, Animal , Epigenesis, Genetic , Histone Deacetylase Inhibitors/pharmacokinetics , Motor Activity/drug effects , Radiopharmaceuticals , Rats
SELECTION OF CITATIONS
SEARCH DETAIL