Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 988419, 2023.
Article in English | MEDLINE | ID: mdl-38162298

ABSTRACT

Casparian strips are ring-like structures consisting of lignin, sealing the apoplastic space between endodermal cells. They are thought to have important functions in controlling radial transport of nutrients and toxic elements in roots. However, Arabidopsis mutants with a defective Casparian strip structure have been found to maintain nutrient homeostasis in ranges supportive of growth under standard laboratory conditions. In this study, we investigated the function of Casparian strips under excess boron (B) conditions using sgn3 and sgn4 mutants with defective Casparian strip development but which do not exhibit excessive deposition of suberin, another endodermal diffusion barrier. The growth of sgn3 and sgn4 mutants did not differ significantly from that of wild-type (WT) plants under different B conditions in plate cultures; however, they were highly sensitive to B excess in hydroponic culture, where transpiration drives the translocation of boric acid toward the shoot. In hydroponic culture with sufficient to excess boric acid, B accumulation in shoots of the sgn3 and sgn4 mutants was higher than that in the WT. A time-course tracer study using 10B-enriched boric acid at a sufficient or slightly excessive concentration showed higher translocation of B into shoots of the sgn3 and sgn4 mutants. Furthermore, a genetically encoded biosensor for boric acid expressed under a stele-specific promoter (proCIF2:NIP5;1 5'UTR : Eluc-PEST) visualized faster boric acid flux into the mutant steles. Collectively, our results demonstrate the importance of Casparian strips in preventing apoplastic diffusion of boric acid into the stele under excess supply.

2.
Plant Cell ; 33(2): 420-438, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33866370

ABSTRACT

Plants take up and translocate nutrients through transporters. In Arabidopsis thaliana, the borate exporter BOR1 acts as a key transporter under boron (B) limitation in the soil. Upon sufficient-B supply, BOR1 undergoes ubiquitination and is transported to the vacuole for degradation, to avoid overaccumulation of B. However, the mechanisms underlying B-sensing and ubiquitination of BOR1 are unknown. In this study, we confirmed the lysine-590 residue in the C-terminal cytosolic region of BOR1 as the direct ubiquitination site and showed that BOR1 undergoes K63-linked polyubiquitination. A forward genetic screen identified that amino acid residues located in vicinity of the substrate-binding pocket of BOR1 are essential for the vacuolar sorting. BOR1 variants that lack B-transport activity showed a significant reduction of polyubiquitination and subsequent vacuolar sorting. Coexpression of wild-type (WT) and a transport-defective variant of BOR1 in the same cells showed degradation of the WT but not the variant upon sufficient-B supply. These findings suggest that polyubiquitination of BOR1 relies on its conformational transition during the transport cycle. We propose a model in which BOR1, as a B transceptor, directly senses the B concentration and promotes its own polyubiquitination and vacuolar sorting for quick and precise maintenance of B homeostasis.


Subject(s)
Antiporters/metabolism , Arabidopsis Proteins/metabolism , Boron/pharmacology , Proteolysis/drug effects , Ubiquitination , Amino Acid Sequence , Amino Acid Substitution , Antiporters/chemistry , Arabidopsis Proteins/chemistry , Binding Sites , Genetic Testing , Green Fluorescent Proteins/metabolism , Lysine/metabolism , Models, Biological , Polyubiquitin/metabolism , Protein Transport/drug effects , Protons , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Substrate Specificity , Ubiquitination/drug effects , Vacuoles/metabolism
3.
Biol Cell ; 113(5): 264-269, 2021 May.
Article in English | MEDLINE | ID: mdl-33443774

ABSTRACT

BACKGROUND INFORMATION: Plants use transporters polarly localised in the plasma membrane for the directional transport of nutrients. The boric acid/borate (B) exporter BOR1 is localised polarly in the inner lateral domain of the plasma membrane in various root cells for efficient translocation of B under B limitation. With a high B supply, BOR1 is ubiquitinated and transported to vacuoles for degradation. The polar localisation and vacuolar targeting of BOR1 are maintained by different endocytosis mechanisms. RESULTS: We demonstrated that one of the most utilised inhibitors in endosomal recycling, brefeldin A (BFA), inhibits the polar localisation of BOR1. BFA inhibits a subset of guanine-nucleotide exchange factors (ARF-GEFs), regulators of vesicle formation. Using a transgenic line expressing BFA-resistant engineered GNOM, we identified GNOM as the key ARF-GEF in endocytosis and maintenance of the polar localisation of BOR1. CONCLUSIONS AND SIGNIFICANCE: We found that BFA inhibits the polar localisation of BOR1 by inhibiting GNOM activity. Our results suggest that GNOM-dependent endocytosis contributes to the maintenance of the polar localisation of BOR1 under B limitation. We propose a model of BOR1 transcytosis initiated from GNOM-dependent endocytosis.


Subject(s)
Antiporters/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Membrane/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Plants, Genetically Modified/metabolism , Brefeldin A/metabolism , Endocytosis , Protein Synthesis Inhibitors/metabolism
4.
Physiol Plant ; 171(4): 703-713, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33090485

ABSTRACT

BOR1 is an efflux transporter of boron (B), responsible for loading B into the xylem. It has been reported that nitrate (NO3 - ) concentrations significantly influence B concentrations in leaves and BOR1 mRNA accumulation in roots. Here, to unravel the interactive effects of B and NO3 - on plant growth and the function of BOR1 under the combination of B and NO3 - , seedling growth was analyzed in Col-0 and bor1 mutants. The growth of bor1 mutants was negatively affected by high NO3 - but neither by potassium chloride (KCl) nor ammonium (NH4 + ) under low B conditions, suggesting the involvement of BOR1 in growth under high NO3 - . Mutants of bor2 and bor4 did not exhibit such growth responses, suggesting that this effect was specific to BOR1 among the BORs tested. Under low B conditions, loss of the BOR1 function led to a more significant decrease in B concentrations in the presence of high NO3 - compared to normal NO3 - . Additionally, grafting experiments demonstrated that these effects of NO3 - occurred when BOR1 is absent in roots. High NO3 - treatment elevated BOR1 mRNA accumulation while the BOR1 protein accumulation was downregulated. These apparent opposite responses indicated that the transcriptional and (post-)translational regulations follow different patterns. Our work provides evidence of a novel regulation of BOR1 and another B transport system by both B and NO3 - in an interactive manner.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Antiporters , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Boron , Nitrates , Plant Roots/genetics , Plant Roots/metabolism
5.
Methods Mol Biol ; 2177: 1-13, 2020.
Article in English | MEDLINE | ID: mdl-32632800

ABSTRACT

Plants take up inorganic nutrients from the soil by transport proteins located in the plasma membrane of root cells. Boron (B) is an essential element for plant growth; it taken up and translocated by boric acid channels such as NIP5;1 and borate exporters such as BOR1 in Arabidopsis. NIP5;1 and BOR1 are localized to the plasma membrane of various root cells in polar manners toward soil- and stele-side, respectively, for efficient transport of B. In response to elevated B concentration, BOR1 undergoes vacuolar sorting for degradation to avoid accumulation of B to a toxic level in tissues. The polar localization and vacuolar sorting of the transport proteins are regulated through differential mechanisms of endocytosis and intracellular trafficking. In this chapter, we describe methods for quantitative live-cell imaging of GFP-NIP5;1 and BOR1-GFP as markers for the polar and vacuolar trafficking.


Subject(s)
Antiporters/genetics , Aquaporins/genetics , Arabidopsis Proteins/genetics , Arabidopsis/physiology , Boric Acids/metabolism , Antiporters/metabolism , Aquaporins/metabolism , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Endocytosis , Endosomes/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Plant Roots/metabolism , Recombinant Proteins/metabolism
6.
Plant Physiol ; 179(4): 1569-1580, 2019 04.
Article in English | MEDLINE | ID: mdl-30710051

ABSTRACT

Boron (B) is an essential element in plants but is toxic when it accumulates to high levels. In root cells of Arabidopsis (Arabidopsis thaliana), the borate exporter BOR1 is polarly localized in the plasma membrane toward the stele side for directional transport of B. Upon high-B supply, BOR1 is rapidly internalized and degraded in the vacuole. The polar localization and B-induced vacuolar sorting of BOR1 are mediated by endocytosis from the plasma membrane. To dissect the endocytic pathways mediating the polar localization and vacuolar sorting, we investigated the contribution of the clathrin adaptor protein, ADAPTOR PROTEIN2 (AP2) complex, to BOR1 trafficking. In the mutants lacking µ- or σ-subunits of the AP2 complex, the polar localization and constitutive endocytosis of BOR1 under low-B conditions were dramatically disturbed. A coimmunoprecipitation assay showed association of the AP2 complex with BOR1, while it was independent of YxxΦ sorting motifs, which are in a cytosolic loop of BOR1. A yeast two-hybrid assay supported the interaction of the AP2 complex µ-subunit with the C-terminal tail but not with the YxxΦ motifs in the cytosolic loop of BOR1. Intriguingly, lack of the AP2 subunit did not affect the B-induced rapid internalization/vacuolar sorting of BOR1. Consistent with defects in the polar localization, the AP2 complex mutants showed hypersensitivity to B deficiency. Our results indicate that AP2-dependent endocytosis maintains the polar localization of BOR1 to support plant growth under low-B conditions, whereas the B-induced vacuolar sorting of BOR1 is mediated through an AP2-independent endocytic pathway.


Subject(s)
Antiporters/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Boron/metabolism , Endocytosis/physiology , Homeodomain Proteins/physiology , Nuclear Proteins/physiology , Antiporters/analysis , Arabidopsis Proteins/analysis , Arabidopsis Proteins/genetics , Cell Membrane/metabolism , Cell Polarity , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Transport , Two-Hybrid System Techniques
7.
Plant Physiol ; 178(3): 1269-1283, 2018 11.
Article in English | MEDLINE | ID: mdl-30266747

ABSTRACT

Boron is an essential plant micronutrient that plays a structural role in the rhamnogalacturonan II component of the pectic cell wall. To prevent boron deficiency under limiting conditions, its uptake, distribution, and homeostasis are mediated by boric acid transporters and channel proteins. Among the membrane channels that facilitate boric acid uptake are the type II nodulin intrinsic protein (NIP) subfamily of aquaporin-like proteins. Arabidopsis (Arabidopsis thaliana) possesses three NIP II genes (NIP5;1, NIP6;1, and NIP7;1) that show distinct tissue expression profiles (predominantly expressed in roots, stem nodes, and developing flowers, respectively). Orthologs of each are represented in all dicots. Here, we show that purified and reconstituted NIP7;1 is a boric acid facilitator. By using native promoter-reporter fusions, we show that NIP7;1 is expressed predominantly in anthers of young flowers in a narrow developmental window, floral stages 9 and 10, with protein accumulation solely within tapetum cells, where it is localized to the plasma membrane. Under limiting boric acid conditions, loss-of-function T-DNA mutants (nip7;1-1 and nip7;1-2) show reduced fertility, including shorter siliques and an increase in aborted seeds, compared with the wild type. Under these conditions, nip7;1 mutant pollen grains show morphological defects, increased aggregation, defective exine cell wall formation, reduced germination frequency, and decreased viability. During stages 9 and 10, the tapetum is essential for supplying materials to the pollen microspore cell wall. We propose that NIP7;1 serves as a gated boric acid channel in developing anthers that aids in the uptake of this critical micronutrient by tapetal cells.


Subject(s)
Aquaporins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Boric Acids/metabolism , Gametogenesis, Plant/genetics , Pollen/genetics , Aquaporins/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Biological Transport , Boron/metabolism , Cell Membrane/metabolism , Cell Wall/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Models, Molecular , Mutation , Phylogeny , Pollen/growth & development , Pollen/metabolism , Promoter Regions, Genetic/genetics , Recombinant Fusion Proteins
8.
Plant J ; 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29882321

ABSTRACT

Boron (B) is an essential micronutrient for plants. To maintain B concentration in tissues at appropriate levels, plants use boric acid channels belonging to the NIP subfamily of aquaporins and BOR borate exporters. To regulate B transport, these transporters exhibit different cell-type specific expression, polar localization, and B-dependent post-transcriptional regulation. Here, we describe the development of genetically encoded biosensors for cytosolic boric acid to visualize the spatial distribution and temporal dynamics of B in plant tissues. The biosensors were designed based on the function of the NIP5;1 5'-untranslated region (UTR), which promotes mRNA degradation in response to an elevated cytosolic boric acid concentration. The signal intensities of the biosensor coupled with Venus fluorescent protein and a nuclear localization signal (uNIP5;1-Venus) showed negative correlation with intracellular B concentrations in cultured tobacco BY-2 cells. When expressed in Arabidopsis thaliana, uNIP5;1-Venus enabled the quantification of B distribution in roots at single-cell resolution. In mature roots, cytosolic B levels in stele were maintained under low B supply, while those in epidermal, cortical, and endodermal cells were influenced by external B concentrations. Another biosensor coupled with a luciferase protein fused to a destabilization PEST sequence (uNIP5;1-Luc) was used to visualize changes in cytosolic boric acid concentrations. Thus, uNIP5;1-Venus/Luc enables visualization of B transport in various plant cells/tissues.

9.
Plant Physiol ; 177(2): 759-774, 2018 06.
Article in English | MEDLINE | ID: mdl-29728453

ABSTRACT

Boron (B) is an essential element for plants; however, as high B concentrations are toxic, B transport must be tightly regulated. BOR1 is a borate exporter in Arabidopsis (Arabidopsis thaliana) that facilitates B translocation into shoots under B deficiency conditions. When the B supply is sufficient, BOR1 expression is down-regulated by selective degradation of BOR1 protein, while additional BOR1 regulatory mechanisms are proposed to exist. In this study, we identified a novel B-dependent BOR1 translational suppression mechanism. In vivo and in vitro reporter assays demonstrated that BOR1 translation was reduced in a B-dependent manner and that the 5'-untranslated region was both necessary and sufficient for this process. Mutational analysis revealed that multiple upstream open reading frames in the 5'-untranslated region were required for BOR1 translational suppression, and this process depended on the efficiency of translational reinitiation at the BOR1 open reading frame after translation of the upstream open reading frames. To understand the physiological significance of BOR1 regulation, we characterized transgenic plants defective in either one or both of the BOR1 regulation mechanisms. BOR1 translational suppression was induced at higher B concentrations than those triggering BOR1 degradation. Plants lacking both regulation mechanisms exhibited more severe shoot growth reduction under high-B conditions than did plants lacking BOR1 degradation alone, thus demonstrating the importance of BOR1 translational suppression. This study demonstrates that two mechanisms of posttranscriptional BOR1 regulation, each induced under different B concentrations, contribute to the avoidance of B toxicity in plants.


Subject(s)
Antiporters/genetics , Arabidopsis Proteins/genetics , Arabidopsis/drug effects , Boron/toxicity , 5' Untranslated Regions , Antiporters/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Boron/administration & dosage , Gene Expression Regulation, Plant/drug effects , Open Reading Frames , Plants, Genetically Modified , Protein Biosynthesis , Proteolysis/drug effects
10.
Bio Protoc ; 8(5): e2755, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-34179281

ABSTRACT

Boron (B) is essential for plant growth and taken up by plant roots as boric acid. Under B limitation, B uptake and translocation in plants are dependent on the boric acid channels located in the plasma membrane. Xenopus leavis oocyte is a reliable heterologous expression system to characterize transport activities of boric acid channels and related major intrinsic proteins (aquaporins). Here, we outline the protocols for expression of boric acid channels and boric acid uptake assay in Xenopus leavis oocytes.

11.
Front Plant Sci ; 8: 1951, 2017.
Article in English | MEDLINE | ID: mdl-29204148

ABSTRACT

Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed.

12.
Plant Cell ; 29(4): 824-842, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28341806

ABSTRACT

Boron uptake in Arabidopsis thaliana is mediated by nodulin 26-like intrinsic protein 5;1 (NIP5;1), a boric acid channel that is located preferentially on the soil side of the plasma membrane in root cells. However, the mechanism underlying this polar localization is poorly understood. Here, we show that the polar localization of NIP5;1 in epidermal and endodermal root cells is mediated by the phosphorylation of Thr residues in the conserved TPG (ThrProGly) repeat in the N-terminal region of NIP5;1. Although substitutions of Ala for three Thr residues in the TPG repeat did not affect lateral diffusion in the plasma membrane, these substitutions inhibited endocytosis and strongly compromised the polar localization of GFP-NIP5;1. Consistent with this, the polar localization was compromised in µ subunit mutants of the clathrin adaptor AP2. The Thr-to-Ala substitutions did not affect the boron transport activity of GFP-NIP5;1 in Xenopus laevis oocytes but did inhibit the ability to complement boron translocation to shoots and rescue growth defects in nip5;1-1 mutant plants under boron-limited conditions. These results demonstrate that the polar localization of NIP5;1 is maintained by clathrin-mediated endocytosis, is dependent on phosphorylation in the TPG repeat, and is necessary for the efficient transport of boron in roots.


Subject(s)
Aquaporins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Boron/metabolism , Endocytosis/physiology , Plant Roots/metabolism , Aquaporins/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biological Transport/genetics , Biological Transport/physiology , Cell Membrane/metabolism , Endocytosis/genetics
13.
Plant Cell Physiol ; 57(9): 1985-2000, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27449211

ABSTRACT

Boron (B) is essential for plants but toxic in excess. The borate efflux transporter BOR1 is expressed in various root cells and localized to the inner/stele-side domain of the plasma membrane (PM) under low-B conditions. BOR1 is rapidly degraded through endocytosis upon sufficient B supply. The polar localization and degradation of BOR1 are considered important for efficient B translocation and avoidance of B toxicity, respectively. In this study, we first analyzed the subcellular localization of BOR1 in roots, cotyledons and hypocotyls, and revealed a polar localization in various cell types. We also found that the inner polarity of BOR1 is established after completion of cytokinesis in the root meristem. Moreover, variable-angle epifluorescence microscopy visualized BOR1-green fluorescent protein (GFP) as particles in the PM with significant lateral movements but in restricted areas. Importantly, a portion of BOR1-GFP particles co-localized with DYNAMIN-RELATED PROTEIN 1A (DRP1A), which is involved in scission of the clathrin-coated vesicles, and they disappeared together from the PM. To examine the contribution of DRP1A-mediated endocytosis to BOR1 localization and degradation, we developed an inducible expression system of the DRP1A K47A variant. The DRP1A variant prolonged the residence time of clathrin on the PM and inhibited endocytosis of membrane lipids. The dominant-negative DRP1A blocked endocytosis of BOR1 and disturbed its polar localization and B-induced degradation. Our results provided insight into the endocytic mechanisms that modulate the subcellular localization and abundance of a mineral transporter for nutrient homeostasis in plant cells.


Subject(s)
Antiporters/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Dynamins/metabolism , Endocytosis/physiology , Antiporters/genetics , Arabidopsis/cytology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Boron/metabolism , Boron/pharmacology , Dynamins/genetics , Endocytosis/drug effects , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Confocal , Plant Cells/metabolism , Plants, Genetically Modified , Red Fluorescent Protein
14.
Front Cell Dev Biol ; 4: 4, 2016.
Article in English | MEDLINE | ID: mdl-26870730

ABSTRACT

Boron (B) is a metalloid that is essential for plant growth but is toxic when present in excess. Arabidopsis BOR1 is a borate exporter, facilitating B translocation from root to shoot under limited-B conditions. BOR1 shows stele side polar localization in the plasma membrane of various root cells, presumably to support B translocation toward the stele. BOR1 is degraded under high-B supply through vacuolar sorting via ubiquitination at the K590 residue to prevent the accumulation of B to a toxic level in shoots. A previous study showed that overexpression of BOR1 under control of the cauliflower mosaic virus 35S RNA promoter improved the growth of Arabidopsis under limited-B conditions without affecting the growth under sufficient-to-excess-B conditions. In this study, we unexpectedly found that ubiquitous expression of a stabilized BOR1 variant improved tolerance to excess-B in Arabidopsis. We established transgenic plants expressing BOR1-GFP fused with hygromycin phosphotransferase (HPT) and BOR1(K590A)-GFP-HPT under control of the ubiquitin 10 promoter. BOR1-GFP-HPT and BOR1(K590A)-GFP-HPT were expressed in various cell types in leaves and roots and showed weak polar localization in root tip cells. BOR1-GFP-HPT, but not BOR1(K590A)-GFP-HPT, was degraded through an endocytic pathway under high-B conditions. Transgenic plants with the stabilized variant BOR1(K590A)-GFP-HPT showed improved root and shoot growth under excess-B conditions. The concentration of B was greater in the shoots of plants with BOR1(K590A)-GFP-HPT or BOR1-GFP-HPT than in those of untransformed wild-type plants. These results suggest that BOR1(K590A)-GFP-HPT confers tolerance to excess-B by excluding B from the cytosol of shoot cells. Results from this study indicate the potential for engineering the trafficking properties of a transporter to produce plants that are tolerant to mineral stress.

15.
Cell ; 164(3): 447-59, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26777403

ABSTRACT

Plant roots forage the soil for minerals whose concentrations can be orders of magnitude away from those required for plant cell function. Selective uptake in multicellular organisms critically requires epithelia with extracellular diffusion barriers. In plants, such a barrier is provided by the endodermis and its Casparian strips--cell wall impregnations analogous to animal tight and adherens junctions. Interestingly, the endodermis undergoes secondary differentiation, becoming coated with hydrophobic suberin, presumably switching from an actively absorbing to a protective epithelium. Here, we show that suberization responds to a wide range of nutrient stresses, mediated by the stress hormones abscisic acid and ethylene. We reveal a striking ability of the root to not only regulate synthesis of suberin, but also selectively degrade it in response to ethylene. Finally, we demonstrate that changes in suberization constitute physiologically relevant, adaptive responses, pointing to a pivotal role of the endodermal membrane in nutrient homeostasis.


Subject(s)
Arabidopsis/physiology , Plant Roots/physiology , Abscisic Acid/metabolism , Arabidopsis/cytology , Cell Differentiation , Ethylenes/metabolism , Fluoresceins/analysis , Lipids/chemistry , Plant Roots/cytology , Signal Transduction
16.
J Plant Res ; 128(5): 863-73, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26013532

ABSTRACT

Endomembrane organization is essential for cell physiology. We previously identified an Arabidopsis thaliana mutant in which a plasma membrane (PM) marker GFP-NIP5;1 and trans-Golgi network/early endosome (TGN/EE) markers were accumulated in intracellular aggregates in epidermal cells of the root elongation zone. The mutant was identified as an allele of UDP-glucose epimerase 4 (UGE4)/root hair defective 1/root epidermal bulgar 1, which was previously described as a mutant with swollen root epidermal cells and has an altered sugar composition in cell wall polysaccharides. Importantly, these defects including aggregate formation were restored by supplementation of D-galactose in the medium. These results suggested that UDP-D-galactose synthesis by UGE4 is important for endomembrane organization in addition to cell wall structure. Here, we further investigated the nature of the aggregates using various markers of endomembrane compartments and BOR1-GFP, which traffics from PM to vacuole in response to high-B supply. The markers of multi-vesicular bodies/late endosomes (MVB/LEs) and BOR1-GFP were strongly accumulated in the intracellular aggregates, while those of the endoplasmic reticulum (ER), the vacuolar membrane, and the Golgi were only slightly affected in the uge4 mutant. The abnormal localizations of these markers in the uge4 mutant differed from the effects of inhibitors of actin and microtubule polymerization, although they also affected endomembrane organization. Furthermore, electron microscopy analysis revealed accumulation of abnormal high-electron-density vesicles in elongating epidermal cells. The abnormal vesicles were often associated or interconnected with TGN/EEs and contained ADP-ribosylation factor 1, which is usually localized to the Golgi and the TGN/EEs. On the other hand, structures of the ER, Golgi apparatus, and MVB/LEs were apparently normal in uge4 cells. Together, our data indicate the importance of UDP-D-galactose synthesis by UGE4 for the organization and function of endomembranes, especially TGN/EEs, which are a sorting station of the secretory and vacuolar pathways.


Subject(s)
Arabidopsis/genetics , UDPglucose 4-Epimerase/genetics , Uridine Diphosphate Galactose/metabolism , Arabidopsis/metabolism , Endosomes/metabolism , Plant Roots/genetics , Plant Roots/metabolism , UDPglucose 4-Epimerase/metabolism , trans-Golgi Network/metabolism
17.
Plant Cell Physiol ; 56(5): 852-62, 2015 May.
Article in English | MEDLINE | ID: mdl-25619824

ABSTRACT

Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range of conditions. In this study, we examined the evolutionary divergence of BORs among terrestrial plants and showed that the lycophyte Selaginella moellendorffii and angiosperms have evolved two types of BOR (clades I and II). Clade I includes AtBOR1 and homologs previously shown to be involved in efficient transport of B under conditions of limited B availability. AtBOR1 shows polar localization in the plasma membrane and high-B-induced vacuolar sorting, important features for efficient B transport under low-B conditions, and rapid down-regulation to avoid B toxicity. Clade II includes AtBOR4 and barley Bot1 involved in B exclusion for high-B tolerance. We showed, using yeast complementation and B transport assays, that three genes in S. moellendorffii, SmBOR1 in clade I and SmBOR3 and SmBOR4 in clade II, encode functional BORs. Furthermore, amino acid sequence alignments identified an acidic di-leucine motif unique in clade I BORs. Mutational analysis of AtBOR1 revealed that the acidic di-leucine motif is required for the polarity and high-B-induced vacuolar sorting of AtBOR1. Our data clearly indicated that the common ancestor of vascular plants had already acquired two types of BOR for low- and high-B tolerance, and that the BOR family evolved to establish B tolerance in each lineage by adapting to their environments.


Subject(s)
Amino Acids/metabolism , Antiporters/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Borates/metabolism , Boron/metabolism , Cell Polarity , Evolution, Molecular , Vacuoles/metabolism , Amino Acid Motifs , Amino Acid Sequence , Arabidopsis/drug effects , Biological Transport , Bryopsida/metabolism , Cloning, Molecular , Conserved Sequence , DNA, Complementary/genetics , Molecular Sequence Data , Mutation/genetics , Phylogeny , Selaginellaceae/metabolism , Sequence Alignment
18.
Elife ; 3: e03115, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25233277

ABSTRACT

The endodermis represents the main barrier to extracellular diffusion in plant roots, and it is central to current models of plant nutrient uptake. Despite this, little is known about the genes setting up this endodermal barrier. In this study, we report the identification and characterization of a strong barrier mutant, schengen3 (sgn3). We observe a surprising ability of the mutant to maintain nutrient homeostasis, but demonstrate a major defect in maintaining sufficient levels of the macronutrient potassium. We show that SGN3/GASSHO1 is a receptor-like kinase that is necessary for localizing CASPARIAN STRIP DOMAIN PROTEINS (CASPs)--major players of endodermal differentiation--into an uninterrupted, ring-like domain. SGN3 appears to localize into a broader band, embedding growing CASP microdomains. The discovery of SGN3 strongly advances our ability to interrogate mechanisms of plant nutrient homeostasis and provides a novel actor for localized microdomain formation at the endodermal plasma membrane.


Subject(s)
Arabidopsis Proteins/genetics , Homeostasis/genetics , Mutation , Nuclear Proteins/genetics , Plant Roots/genetics , Protein Kinases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Biological Transport/genetics , COP9 Signalosome Complex , Cell Differentiation/genetics , Diffusion , Gene Expression Profiling , Gene Expression Regulation, Plant , Lipids/biosynthesis , Microscopy, Confocal , Nuclear Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Plant Roots/cytology , Plant Roots/metabolism , Plants, Genetically Modified , Potassium/metabolism , Protein Kinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Water/metabolism
19.
Methods Mol Biol ; 1209: 203-17, 2014.
Article in English | MEDLINE | ID: mdl-25117286

ABSTRACT

Endocytosis and membrane trafficking are the major factors controlling the abundance of plasma membrane proteins, such as transporters and receptors. We have found that Arabidopsis borate transporter BOR1 is polarly localized to the inner (stele-facing) plasma membrane domain of various root cells under boron limitation, and when boron is supplied in excess, BOR1 is rapidly transferred to the vacuole for immediate degradation. The BOR1 polarity and degradation are controlled by membrane trafficking including endocytosis. In this chapter, we describe methods for observation of endocytic trafficking of BOR1, and detection of BOR1 ubiquitination that is required for vacuolar sorting for degradation.


Subject(s)
Antiporters/isolation & purification , Arabidopsis Proteins/isolation & purification , Endocytosis , Molecular Biology/methods , Antiporters/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Protein Transport/genetics , Proteolysis , Ubiquitination/genetics , Vacuoles/metabolism
20.
Plant J ; 78(5): 890-902, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24654769

ABSTRACT

Boron is an essential micronutrient for higher plants. Boron deficiency is an important agricultural issue because it results in loss of yield quality and/or quantity in cereals and other crops. To understand boron transport mechanisms in cereals, we characterized OsNIP3;1, a member of the major intrinsic protein family in rice (Oryza sativa L.), because OsNIP3;1 is the most similar rice gene to the Arabidopsis thaliana boric acid channel genes AtNIP5;1 and AtNIP6;1. Yeast cells expressing OsNIP3;1 imported more boric acid than control cells. GFP-tagged OsNIP3;1 expressed in tobacco BY2 cells was localized to the plasma membrane. The accumulation of OsNIP3;1 transcript increased fivefold in roots within 6 h of the onset of boron starvation, but not in shoots. Promoter-GUS analysis suggested that OsNIP3;1 is expressed mainly in exodermal cells and steles in roots, as well as in cells around the vascular bundles in leaf sheaths and pericycle cells around the xylem in leaf blades. The growth of OsNIP3;1 RNAi plants was impaired under boron limitation. These results indicate that OsNIP3;1 functions as a boric acid channel, and is required for acclimation to boron limitation. Boron distribution among shoot tissues was altered in OsNIP3;1 knockdown plants, especially under boron-deficient conditions. This result demonstrates that OsNIP3;1 regulates boron distribution among shoot tissues, and that the correct boron distribution is crucial for plant growth.


Subject(s)
Boron/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Biological Transport , Boron/deficiency , Gene Expression Regulation, Plant , Molecular Sequence Data , Oryza/genetics , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...