Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Orthod ; 35(5): 583-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23041933

ABSTRACT

This study examined the influence of the quantity and quality of cortical bone on the failure force of miniscrew implants. Twenty-six titanium alloy miniscrew implants (AbsoAnchor) 1.4mm in diameter and 5 or 7 mm long were placed in cross-sectioned maxillae (n = 6) and mandibles (n = 20) of human cadavers. Computed tomography imaging was used to estimate the cortical bone thickness and bone mineral density [total bone mineral density (TBMD, values obtained from cortical bone plus trabecular bone); cortical bone mineral density (CBMD, values obtained from only cortical bone)]. Maximum force at failure was measured in a shear test. Nanoindentation tests were performed to measure the hardness and elastic modulus of cortical bone around the miniscrew implants. The mean failure force of miniscrew implants placed in mandibles was significantly greater than that for implants in maxillae, and the bone hardness of mandibles was significantly greater than that of maxillae. The length of miniscrew implants did not influence the mean failure force in monocortical placement in the mandible. Cortical bone thickness, TBMD, CBMD, and bone hardness were significantly related to the mean failure force. CBMD was related to the mechanical properties of cortical bone. In conclusion, the quantity and quality of cortical bone greatly influenced the failure force of miniscrew implants.


Subject(s)
Bone Density , Bone Screws , Dental Implants , Dental Restoration Failure , Orthodontic Anchorage Procedures , Alloys , Cadaver , Humans , Mandible/diagnostic imaging , Mandible/physiology , Maxilla/diagnostic imaging , Maxilla/physiology , Titanium , Tomography, X-Ray Computed
2.
Tree Physiol ; 28(9): 1421-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18595854

ABSTRACT

During the summers (July and August) of 2002-2005, we measured interannual variation in maximum carboxylation rate (V(cmax)) within a Fagus crenata Blume crown in relation to climate variables such as air temperature, daytime vapor pressure deficit (VPD) and daily photosynthetic photon flux, leaf nitrogen per unit area (N(a)) and leaf mass per unit area (LMA). Climatic conditions in the summers of 2002-2004 differed markedly, with warm and dry atmospheric conditions in 2002, cool, humid and cloudy conditions in 2003, and warm clear conditions in 2004. Conditions in summer 2005 were intermediate between those of summers 2002 and 2003, and similar to recent (8-year) means. In July, marked interannual variation in V(cmax) was mainly observed in leaves in the high-light environment (relative photon flux > 50%) within the crown. At the crown top, V(cmax) was about twofold higher in 2002 than in 2003, and V(cmax) values in 2004 and 2005 were intermediate between those in 2002 and 2003. In August, although interannual variation in V(cmax) among the years 2003, 2004 and 2005 was less, marked variation between 2002 and the other study years was evident. Multiple regression analysis of V(cmax) against the climate variables revealed that VPD of the previous 10-30 days had a significant influence on variability in V(cmax). Neither N(a), LMA nor leaf CO(2) conductance from the stomata to the carboxylation site explained the variability in V(cmax). Our results indicate that the long-term climatic response of V(cmax) should be considered when estimating forest carbon gain across the year.


Subject(s)
Fagus/metabolism , Nitrogen/metabolism , Photosynthesis , Plant Leaves/metabolism , Weather , Climate , Fagus/anatomy & histology , Japan , Plant Leaves/anatomy & histology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...