Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203320

ABSTRACT

In this study, we applied argon plasma treatment to titanium surfaces with nanostructures deposited by concentrated alkali treatment and investigated the effects on the surface of the material and the tissue surrounding an implant site. The results showed that the treatment with argon plasma removed carbon contaminants and increased the surface energy of the material while the nanoscale network structure deposited on the titanium surface remained in place. Reactive oxygen species reduced the oxidative stress of bone marrow cells on the treated titanium surface, creating a favorable environment for cell proliferation. Good results were observed in vitro evaluations using rat bone marrow cells. The group treated with argon plasma exhibited the highest apatite formation in experiments using simulated body fluids. The results of in vivo evaluation using rat femurs revealed that the treatment improved the amount of new bone formation around an implant. Thus, the results demonstrate that argon plasma treatment enhances the ability of nanostructured titanium surfaces to induce hard tissue differentiation and supports new bone formation around an implant site.


Subject(s)
Nanostructures , Plasma Gases , Animals , Rats , Argon/pharmacology , Titanium/pharmacology , Plasma Gases/pharmacology , Plasma
2.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299241

ABSTRACT

In this paper, we suggest that the atmospheric pressure plasma treatment of pure titanium metal may be useful for improving the ability of rat bone marrow cells (RBMCs) to induce hard tissue differentiation. Previous studies have reported that the use of argon gas induces a higher degree of hard tissue formation. Therefore, this study compares the effects of plasma treatment with argon gas on the initial adhesion ability and hard tissue differentiation-inducing ability of RBMCs. A commercially available titanium metal plate was used as the experimental material. A plate polished using water-resistant abrasive paper #1500 was used as the control, and a plate irradiated with argon mixed with atmospheric pressure plasma was used as the experimental plate. No structural change was observed on the surface of the titanium metal plate in the scanning electron microscopy results, and no change in the surface roughness was observed via scanning probe microscopy. X-ray photoelectron spectroscopy showed a decrease in the carbon peak and the formation of hydroxide in the experimental group. In the distilled water drop test, a significant decrease in the contact angle was observed for the experimental group, and the results indicated superhydrophilicity. Furthermore, the bovine serum albumin adsorption, initial adhesion of RBMCs, alkaline phosphatase activity, calcium deposition, and genetic marker expression of rat bone marrow cells were higher in the experimental group than those in the control group at all time points. Rat distal femur model are used as in vivo model. Additionally, microcomputed tomography analysis showed significantly higher results for the experimental group, indicating a large amount of the formed hard tissue. Histopathological evaluation also confirmed the presence of a prominent newly formed bone seen in the images of the experimental group. These results indicate that the atmospheric pressure plasma treatment with argon gas imparts superhydrophilicity, without changing the properties of the pure titanium plate surface. It was also clarified that it affects the initial adhesion of bone marrow cells and the induction of hard tissue differentiation.


Subject(s)
Argon/pharmacology , Osseointegration/drug effects , Plasma Gases/chemistry , Animals , Argon/chemistry , Atmospheric Pressure , Bone Marrow Cells/drug effects , Cell Adhesion/drug effects , Male , Microscopy, Electron, Scanning/methods , Osseointegration/physiology , Osteogenesis/drug effects , Photoelectron Spectroscopy/methods , Plasma Gases/pharmacology , Rats , Rats, Sprague-Dawley , Surface Properties , Titanium/chemistry , X-Ray Microtomography/methods
3.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203231

ABSTRACT

Early osseointegration is important to achieve initial stability after implant placement. We have previously reported that atmospheric-pressure plasma treatment confers superhydrophilicity to titanium. Herein, we examined the effects of titanium implant material, which was conferred superhydrophilicity by atmospheric-pressure plasma treatment, on the surrounding tissue in rat femur. Control and experimental groups included untreated screws and those irradiated with atmospheric-pressure plasma using piezobrush, respectively. The femurs of 8-week-old male Sprague-Dawley rats were used for in vivo experiments. Various data prepared from the Micro-CT analysis showed results showing that more new bone was formed in the test group than in the control group. Similar results were shown in histological analysis. Thus, titanium screw, treated with atmospheric-pressure plasma, could induce high hard tissue differentiation even at the in vivo level. This method may be useful to achieve initial stability after implant placement.


Subject(s)
Dental Implants , Titanium/chemistry , Animals , Femur/drug effects , Hydrophobic and Hydrophilic Interactions , Male , Osseointegration/drug effects , Osteogenesis/drug effects , Prostheses and Implants , Rats , Rats, Sprague-Dawley , Surface Properties , Titanium/pharmacology
4.
Int J Mol Sci ; 21(20)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050494

ABSTRACT

Zirconia ceramics such as ceria-stabilized zirconia/alumina nanocomposites (nano-ZR) are applied as implant materials due to their excellent mechanical properties. However, surface treatment is required to obtain sufficient biocompatibility. In the present study, we explored the material surface functionalization and assessed the initial adhesion of rat bone marrow mesenchymal stem cells, their osteogenic differentiation, and production of hard tissue, on plasma-treated alkali-modified nano-ZR. Superhydrophilicity was observed on the plasma-treated surface of alkali-treated nano-ZR along with hydroxide formation and reduced surface carbon. A decreased contact angle was also observed as nano-ZR attained an appropriate wettability index. Treated samples showed higher in vitro bovine serum albumin (BSA) adsorption, initial adhesion of bone marrow and endothelial vascular cells, high alkaline phosphatase activity, and increased expression of bone differentiation-related factors. Furthermore, the in vivo performance of treated nano-ZR was evaluated by implantation in the femur of male Sprague-Dawley rats. The results showed that the amount of bone formed after the plasma treatment of alkali-modified nano-ZR was higher than that of untreated nano-ZR. Thus, induction of superhydrophilicity in nano-ZR via atmospheric pressure plasma treatment affects bone marrow and vascular cell adhesion and promotes bone formation without altering other surface properties.


Subject(s)
Alkalies/chemistry , Alkalies/pharmacology , Aluminum Oxide/chemistry , Nanocomposites/chemistry , Plasma , Zirconium/chemistry , Albumins/chemistry , Albumins/metabolism , Alkalies/pharmacokinetics , Bone and Bones/drug effects , Cell Differentiation/drug effects , Humans , Immunohistochemistry , Nanocomposites/ultrastructure , Neovascularization, Physiologic/drug effects , Osteogenesis/drug effects , Plasma/chemistry , Spectrum Analysis
5.
Materials (Basel) ; 13(12)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570895

ABSTRACT

Nanostructured zirconia/alumina composite (NANOZR) has been explored as a suitable material for fabricating implants for patients with metal allergy. In this study, we examined the effect of UV treatment on the NANOZR surface. The experimental group was UV-treated NANOZR and the control group was untreated NANOZR. Observation of the surface of the UV-treated materials revealed no mechanical or structural change; however, the carbon content on the material surface was reduced, and the material surface displayed superhydrophilicity. Further, the effects of the UV-induced superhydrophilic properties of NANOZR plates on the adhesion behavior of various cells were investigated. Treatment of the NANOZR surface was found to facilitate protein adsorption onto it. An in vitro evaluation using rat bone marrow cells, human vascular endothelial cells, and rat periodontal ligament cells revealed high levels of adhesion in the experimental group. In addition, it was clarified that the NANOZR surface forms active oxygen and suppresses the generation of oxidative stress. Overall, the study results suggested that UV-treated NANOZR is useful as a new ceramic implant material.

6.
Materials (Basel) ; 13(10)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429186

ABSTRACT

Contamination of implants is inevitable during different steps of production as well as during the clinical use. We devised a new implant cleaning strategy to restore the bioactivities on dental implant surfaces. We evaluated the efficiency of the Finevo cleaning system, and Ultraviolet and Plasma treatments to decontaminate hydrocarbon-contaminated titanium disks. The surfaces of the contaminated titanium disks cleaned using the Finevo cleaning system were similar to those of the uncontaminated titanium disks in scanning electron microscopy and X-ray photoelectron spectroscopy analysis, but no obvious change in the roughness was observed in the scanning probe microscopy analysis. The rat bone marrow mesenchymal stem cells (rBMMSCs) cultured on the treated titanium disks attached to and covered the surfaces of disks cleaned with the Finevo cleaning system. The alkaline phosphatase activity, calcium deposition, and osteogenesis-related gene expression in rBMMSCs on disks cleaned using the Finevo cleaning system were higher compared to those in the ultraviolet and plasma treatments, displaying better cell functionality. Thus, the Finevo cleaning system can enhance the attachment, differentiation, and mineralization of rBMMSCs on treated titanium disk surfaces. This research provides a new strategy for cleaning the surface of contaminated titanium dental implants and for restoration of their biological functions.

7.
Int J Mol Sci ; 20(4)2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30781372

ABSTRACT

Ingredients and surface modification methods are being continually developed to improve osseointegration of dental implants and reduce healing times. In this study, we demonstrate in vitro that, by applying concentrated alkali treatment to NANOZR with strong bending strength and fracture toughness, a significant improvement in the bone differentiation of rat bone marrow cells can be achieved. We investigated the influence of materials modified with this treatment in vivo, on implanted surrounding tissues using polychrome sequential fluorescent labeling and micro-computer tomography scanning. NANOZR implant screws in the alkali-treated group and the untreated group were evaluated after implantation in the femur of Sprague⁻Dawley male rats, indicating that the amount of new bone in the alkali-modified NANOZR was higher than that of unmodified NANOZR. Alkali-modified NANOZR implants proved to be useful for the creation of new implant materials.


Subject(s)
Alkalies/pharmacology , Implants, Experimental , Nanocomposites/chemistry , Osseointegration/drug effects , Zirconium/chemistry , Animals , Bone and Bones/cytology , Cell Differentiation/drug effects , Male , Osteogenesis/drug effects , Photoelectron Spectroscopy , Rats , Surface Properties , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL