Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Appl Glycosci (1999) ; 70(4): 99-107, 2023.
Article in English | MEDLINE | ID: mdl-38239764

ABSTRACT

Some probiotics including lactobacilli, colonize host animal cells by targeting glycosaminoglycans (GAGs), such as heparin, located in the extracellular matrix. Recent studies have shown that several lactic acid bacteria degrade GAGs. Here we show the structure/function relationship of Lacticaseibacillus rhamnosus 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase (KduI) crucial for metabolism of unsaturated glucuronic acid produced through degradation of GAGs. Crystal structures of ligand-free and bound KduIs were determined by X-ray crystallography and the enzyme was found to consist of six identical subunits and adopt a ß-helix as a basic scaffold. Ligands structurally similar to the substrate were bound to the cleft of each enzyme subunit. Several residues located in the cleft interacted with ligands through hydrogen bonds and/or C-C contacts. In addition to substrate analogs, a metal ion coordinated to four residues, His198, His200, Glu205, and His248, in the cleft, and the enzyme activity was significantly inhibited by a chelator, ethylenediaminetetraacetic acid. Site-directed mutants in Arg163, Ile165, Thr184, Thr194, His200, Arg203, Tyr207, Met262, and Tyr269 in the cleft exhibited little enzyme activity, indicating that these residues and the metal ion constituted an active site in the cleft. This is the first report on the active site structure of KduI based on the ligand-bound complex.

2.
Sci Rep ; 12(1): 12653, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879323

ABSTRACT

Gram-negative Sphingomonas sp. strain A1 exhibits positive chemotaxis toward acidic polysaccharide pectin. SPH1118 has been identified as a pectin-binding protein involved in both pectin chemotaxis and assimilation. Here we show tertiary structures of SPH1118 with six different conformations as determined by X-ray crystallography. SPH1118 consisted of two domains with a large cleft between the domains and substrates bound to positively charged and aromatic residues in the cleft through hydrogen bond and stacking interactions. Substrate-free SPH1118 adopted three different conformations in the open form. On the other hand, the two domains were closed in substrate-bound form and the domain closure ratio was changed in response to the substrate size, suggesting that the conformational change upon binding to the substrate triggered the expression of pectin chemotaxis and assimilation. This study first clarified that the solute-binding protein with dual functions recognized the substrate through flexible conformational changes in response to the substrate size.


Subject(s)
Chemotaxis , Sphingomonas , Bacterial Proteins/metabolism , Binding Sites , Carrier Proteins/metabolism , Crystallography, X-Ray , Models, Molecular , Pectins/metabolism , Protein Conformation , Sphingomonas/metabolism , Substrate Specificity
3.
Sci Rep ; 12(1): 10948, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768476

ABSTRACT

Host determinants for formation/composition of human oral microbiota remain to be clarified, although microorganisms entering the mouth cannot necessarily colonize the oral environment. Here we show that human oral-abundant bacteria degraded host glycosaminoglycans (GAGs) in saliva and gingiva, and certain bacteria significantly grew on hyaluronan (HA), a kind of GAGs. Microbial communities from teeth or gingiva of healthy donors assimilated HA. Metagenomic analysis of human oral microbiota under different carbon sources revealed HA-driven Granulicatella growth. HA-degrading bacterial strains independently isolated from teeth and gingiva were identified as Granulicatella adiacens producing extracellular 130 kDa polysaccharide lyase as a HA-degrading enzyme encoded in a peculiar GAG genetic cluster containing genes for isomerase KduI and dehydrogenase DhuD. These findings demonstrated that GAGs are one of the host determinants for formation/composition of oral microbiota not only for colonization but also for the adaptation to the host niche. Especially, HA enhanced the G. adiacens propagation.


Subject(s)
Carnobacteriaceae , Microbiota , Bacteria/metabolism , Carnobacteriaceae/metabolism , Glycosaminoglycans/metabolism , Humans , Hyaluronic Acid/metabolism , Streptococcus/metabolism
4.
Sci Rep ; 12(1): 8032, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672418

ABSTRACT

While biodiesel is drawing attention as an eco-friendly fuel, the use of crude glycerol, a byproduct of the fuel production process, has increasingly become a concern to be addressed. Here we show the development of a low-cost fermentation technology using an atmospheric nitrogen-fixing bacterium to recycle crude glycerol into functional biopolymers. Azotobacter vinelandii showed substantial growth on tap water-diluted crude glycerol without any pretreatment. The number of viable A. vinelandii cells increased over 1000-fold under optimal growth conditions. Most of the glycerol content (~ 0.2%) in the crude glycerol medium was completely depleted within 48 h of culture. Useful polymers, such as polyhydroxybutyrate and alginate, were also produced. Polyhydroxybutyrate productivity was increased ten-fold by blocking the alginate synthesis pathway. Although there are few examples of using crude glycerol directly as a carbon source for microbial fermentation, there are no reports on the use of crude glycerol without the addition of a nitrogen source. This study demonstrated that it is possible to develop a technology to produce industrially useful polymers from crude glycerol through energy-saving and energy-efficient fermentation using the atmospheric nitrogen-fixing microorganism A. vinelandii.


Subject(s)
Azotobacter vinelandii , Alginates/metabolism , Azotobacter vinelandii/metabolism , Fermentation , Glycerol/metabolism , Nitrogen/metabolism , Polymers/metabolism
5.
Biochem Biophys Res Commun ; 594: 124-130, 2022 02 26.
Article in English | MEDLINE | ID: mdl-35081501

ABSTRACT

EfeUOB is a siderophore-independent iron uptake mechanism in bacteria. EfeU, EfeO, and EfeB are a permease, an iron-binding or electron-transfer protein, and a peroxidase, respectively. A Gram-negative bacterium, Sphingomonas sp. strain A1, encodes EfeU, EfeO, EfeB together with alginate-binding protein Algp7, a truncated EfeO-like protein (EfeOII), in the genome. The typical EfeO (EfeOI) consists of N-terminal cupredoxin and C-terminal M75 peptidase domains. Here, we detail the structure and function of bacterial EfeB and EfeO. Crystal structures of strain A1 EfeB and Escherichia coli EfeOI were determined at 2.30 Å and 1.85 Å resolutions, respectively. A molecule of heme involved in oxidase activity was bound to the C-terminal Dyp peroxidase domain of EfeB. Two domains of EfeOI were connected by a short loop, and a zinc ion was bound to four residues, Glu156, Glu159, Asp173, and Glu255, in the C-terminal M75 peptidase domain. These residues formed tetrahedron geometry suitable for metal binding and are well conserved among various EfeO proteins including Algp7 (EfeOII), although the metal-binding site (HxxE) is proposed in the C-terminal M75 peptidase domain. This is the first report on structure of a typical EfeO with two domains, postulating a novel metal-binding motif "ExxE-//-D-//-E" in the EfeO C-terminal M75 peptidase domain.


Subject(s)
Cation Transport Proteins/chemistry , Escherichia coli Proteins/chemistry , Heme/chemistry , Iron/chemistry , Amino Acid Motifs , Azurin/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Biological Transport , Crystallography, X-Ray , Escherichia coli Proteins/metabolism , Metals/chemistry , Molecular Conformation , Oxidoreductases/chemistry , Protein Binding , Protein Conformation , Protein Domains , Protein Structure, Secondary , Sphingomonas/metabolism
6.
Biosci Biotechnol Biochem ; 85(12): 2410-2419, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34610097

ABSTRACT

Gram-negative Sphingomonas sp. A1 incorporates acidic polysaccharide alginate into the cytoplasm via a cell-surface alginate-binding protein (AlgQ2)-dependent ATP-binding cassette transporter (AlgM1M2SS). We investigated the function of calcium bound to the EF-hand-like motif in AlgQ2 by introducing mutations at the calcium-binding site. The X-ray crystallography of the AlgQ2 mutant (D179A/E180A) demonstrated the absence of calcium binding and significant disorder of the EF-hand-like motif. Distinct from the wild-type AlgQ2, the mutant was quite unstable at temperature of strain A1 growth, although unsaturated alginate oligosaccharides stabilized the mutant by formation of substrate/protein complex. In the assay of ATPase and alginate transport by AlgM1M2SS reconstructed in the liposome, the wild-type and mutant AlgQ2 induced AlgM1M2SS ATPase activity in the presence of unsaturated alginate tetrasaccharide. These results indicate that the calcium bound to EF-hand-like motif stabilizes the substrate-unbound AlgQ2 but is not required for the complexation of substrate-bound AlgQ2 and AlgM1M2SS.


Subject(s)
Bacterial Proteins
7.
Biochem Biophys Res Commun ; 526(4): 1138-1142, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32317185

ABSTRACT

Brown macroalgae is a promising marine biomass for the production of bioethanol and biodiesel fuels. Here we investigate the biochemical processes used by marine oleaginous yeast for assimilating the major carbohydrate found in brown macroalgae. Briefly, yeast Rhodosporidiobolus fluvialis strain Y2 was isolated from seawater and grown in minimal medium containing reduced sugar alcohol mannitol as the sole carbon source with a salinity comparable to seawater. Conditions limiting nitrogen were used to facilitate lipid synthesis. R. fluvialis Y2 yielded 55.1% (w/w) and 39.1% (w/w) of lipids, per dry cell weight, from mannitol in the absence and presence of salinity, respectively. Furthermore, mannitol, as a sugar source, led to an increase in the composition of polyunsaturated fatty acids, linoleic acid (C18:2) and linolenic acid (C18:3), compared to glucose. This suggests that oxidation of mannitol leads to the activation of NADH-dependent fatty acid desaturases in R. fluvialis Y2. Such fatty acid composition may contribute to the cold-flow properties of biodiesel fuels. Our results identified a salt-tolerant oleaginous yeast species with unique metabolic traits, demonstrating a key role as a decomposer in the global carbon cycle through marine ecosystems. This is the first study on mannitol-induced synthesis of lipids enriched with polyunsaturated fatty acids by marine yeast.


Subject(s)
Aquatic Organisms/metabolism , Basidiomycota/metabolism , Fatty Acids, Unsaturated/metabolism , Mannitol/metabolism , Aquatic Organisms/ultrastructure , Basidiomycota/drug effects , Basidiomycota/isolation & purification , Basidiomycota/ultrastructure , Fatty Acids, Unsaturated/biosynthesis , Nitrogen/pharmacology , Oxidation-Reduction
8.
Sci Rep ; 10(1): 3977, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32132546

ABSTRACT

As opposed to typical bacteria exhibiting chemotaxis towards low-molecular-weight substances, such as amino acids and mono/oligosaccharides, gram-negative Sphingomonas sp. strain A1 shows chemotaxis towards alginate and pectin polysaccharides. To identify the mechanism of chemotaxis towards macromolecules, a genomic fragment was isolated from the wild-type strain A1 through complementation with the mutant strain A1-M5 lacking chemotaxis towards pectin. This fragment contained several genes including sph1118. Through whole-genome sequencing of strain A1-M5, sph1118 was found to harbour a mutation. In fact, sph1118 disruptant lost chemotaxis towards pectin, and this deficiency was recovered by complementation with wild-type sph1118. Interestingly, the gene disruptant also exhibited decreased pectin assimilation. Furthermore, the gene product SPH1118 was expressed in recombinant E. coli cells, purified and characterised. Differential scanning fluorimetry and UV absorption spectroscopy revealed that SPH1118 specifically binds to pectin with a dissociation constant of 8.5 µM. Using binding assay and primary structure analysis, SPH1118 was predicted to be a periplasmic pectin-binding protein associated with an ATP-binding cassette transporter. This is the first report on the identification and characterisation of a protein triggering chemotaxis towards the macromolecule pectin as well as its assimilation.


Subject(s)
Chemotaxis , Pectins/metabolism , Receptors, Cell Surface/metabolism , Sphingomonas/cytology , Sphingomonas/metabolism , Alginates/metabolism , Substrate Specificity
9.
J Clin Invest ; 129(12): 5568-5583, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31557132

ABSTRACT

Gene therapy approaches are being deployed to treat recessive genetic disorders by restoring the expression of mutated genes. However, the feasibility of these approaches for dominantly inherited diseases - where treatment may require reduction in the expression of a toxic mutant protein resulting from a gain-of-function allele - is unclear. Here we show the efficacy of allele-specific RNAi as a potential therapy for Charcot-Marie-Tooth disease type 2D (CMT2D), caused by dominant mutations in glycyl-tRNA synthetase (GARS). A de novo mutation in GARS was identified in a patient with a severe peripheral neuropathy, and a mouse model precisely recreating the mutation was produced. These mice developed a neuropathy by 3-4 weeks of age, validating the pathogenicity of the mutation. RNAi sequences targeting mutant GARS mRNA, but not wild-type, were optimized and then packaged into AAV9 for in vivo delivery. This almost completely prevented the neuropathy in mice treated at birth. Delaying treatment until after disease onset showed modest benefit, though this effect decreased the longer treatment was delayed. These outcomes were reproduced in a second mouse model of CMT2D using a vector specifically targeting that allele. The effects were dose dependent, and persisted for at least 1 year. Our findings demonstrate the feasibility of AAV9-mediated allele-specific knockdown and provide proof of concept for gene therapy approaches for dominant neuromuscular diseases.


Subject(s)
Charcot-Marie-Tooth Disease/therapy , Genetic Therapy , Glycine-tRNA Ligase/genetics , RNA Interference , Alleles , Animals , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mutation
10.
Hum Mol Genet ; 27(23): 4036-4050, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30124830

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes implicated in several dominant and recessive disease phenotypes. The canonical function of ARSs is to couple an amino acid to a cognate transfer RNA (tRNA). We identified three novel disease-associated missense mutations in the alanyl-tRNA synthetase (AARS) gene in three families with dominant axonal Charcot-Marie-Tooth (CMT) disease. Two mutations (p.Arg326Trp and p.Glu337Lys) are located near a recurrent pathologic change in AARS, p.Arg329His. The third (p.Ser627Leu) is in the editing domain of the protein in which hitherto only mutations associated with recessive encephalopathies have been described. Yeast complementation assays demonstrated that two mutations (p.Ser627Leu and p.Arg326Trp) represent loss-of-function alleles, while the third (p.Glu337Lys) represents a hypermorphic allele. Further, aminoacylation assays confirmed that the third mutation (p.Glu337Lys) increases tRNA charging velocity. To test the effect of each mutation in the context of a vertebrate nervous system, we developed a zebrafish assay. Remarkably, all three mutations caused a pathological phenotype of neural abnormalities when expressed in zebrafish, while expression of the human wild-type messenger RNA (mRNA) did not. Our data indicate that not only functional null or hypomorphic alleles, but also hypermorphic AARS alleles can cause dominantly inherited axonal CMT disease.


Subject(s)
Alanine-tRNA Ligase/genetics , Amino Acyl-tRNA Synthetases/genetics , Charcot-Marie-Tooth Disease/genetics , RNA, Transfer/genetics , Adult , Alleles , Amino Acids/genetics , Animals , Charcot-Marie-Tooth Disease/pathology , Female , Gene Expression Regulation, Enzymologic/genetics , Genetic Heterogeneity , Humans , Male , Middle Aged , Mutation/genetics , Pedigree , Yeasts/genetics , Zebrafish/genetics
11.
Nucleic Acids Res ; 46(7): e37, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29361055

ABSTRACT

Active tRNAs are extensively post-transcriptionally modified, particularly at the wobble position 34 and the position 37 on the 3'-side of the anticodon. The 5-carboxy-methoxy modification of U34 (cmo5U34) is present in Gram-negative tRNAs for six amino acids (Ala, Ser, Pro, Thr, Leu and Val), four of which (Ala, Ser, Pro and Thr) have a terminal methyl group to form 5-methoxy-carbonyl-methoxy-uridine (mcmo5U34) for higher reading-frame accuracy. The molecular basis for the selective terminal methylation is not understood. Many cmo5U34-tRNAs are essential for growth and cannot be substituted for mutational analysis. We show here that, with a novel genetic approach, we have created and isolated mutants of Escherichia coli tRNAPro and tRNAVal for analysis of the selective terminal methylation. We show that substitution of G35 in the anticodon of tRNAPro inactivates the terminal methylation, whereas introduction of G35 to tRNAVal confers it, indicating that G35 is a major determinant for the selectivity. We also show that, in tRNAPro, the terminal methylation at U34 is dependent on the primary m1G methylation at position 37 but not vice versa, indicating a hierarchical ranking of modifications between positions 34 and 37. We suggest that this hierarchy provides a mechanism to ensure top performance of a tRNA inside of cells.


Subject(s)
Anticodon/genetics , Nucleic Acid Conformation , RNA, Transfer, Pro/genetics , RNA, Transfer/genetics , Base Sequence , Codon/genetics , Escherichia coli/genetics , Methylation , RNA, Bacterial/genetics , Uridine/analogs & derivatives , Uridine/genetics
12.
ACS Pharmacol Transl Sci ; 1(1): 21-31, 2018 Sep 14.
Article in English | MEDLINE | ID: mdl-32219202

ABSTRACT

Although abnormal increases in the level or activity of cyclin-dependent kinase 4 (CDK4) occur frequently in cancer, the underlying mechanism is not fully understood. Here, we show that methionyl-tRNA synthetase (MRS) specifically stabilizes CDK4 by enhancing the formation of the complex between CDK4 and a chaperone protein. Knockdown of MRS reduced the CDK4 level, resulting in G0/G1 cell cycle arrest. The effects of MRS on CDK4 stability were more prominent in the tumor suppressor p16INK4a-negative cancer cells because of the competitive relationship of the two proteins for binding to CDK4. Suppression of MRS reduced cell transformation and the tumorigenic ability of a p16INK4a-negative breast cancer cell line in vivo. Further, the MRS levels showed a positive correlation with those of CDK4 and the downstream signals at high frequency in p16INK4a-negative human breast cancer tissues. This work revealed an unexpected functional connection between the two enzymes involving protein synthesis and the cell cycle.

13.
Hum Mutat ; 38(10): 1412-1420, 2017 10.
Article in English | MEDLINE | ID: mdl-28675565

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in myriad dominant and recessive disease phenotypes. Glycyl-tRNA synthetase (GARS) is a bifunctional ARS that charges tRNAGly in the cytoplasm and mitochondria. GARS variants have been associated with dominant Charcot-Marie-Tooth disease but have not been convincingly implicated in recessive phenotypes. Here, we describe a patient from the NIH Undiagnosed Diseases Program with a multisystem, developmental phenotype. Whole-exome sequence analysis revealed that the patient is compound heterozygous for one frameshift (p.Glu83Ilefs*6) and one missense (p.Arg310Gln) GARS variant. Using in vitro and in vivo functional studies, we show that both GARS variants cause a loss-of-function effect: the frameshift variant results in depleted protein levels and the missense variant reduces GARS tRNA charging activity. In support of GARS variant pathogenicity, our patient shows striking phenotypic overlap with other patients having ARS-related recessive diseases, including features associated with variants in both cytoplasmic and mitochondrial ARSs; this observation is consistent with the essential function of GARS in both cellular locations. In summary, our clinical, genetic, and functional analyses expand the phenotypic spectrum associated with GARS variants.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Developmental Disabilities/genetics , Genes, Recessive , Glycine-tRNA Ligase/genetics , Charcot-Marie-Tooth Disease/diagnostic imaging , Charcot-Marie-Tooth Disease/physiopathology , Child , Cytoplasm/enzymology , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/physiopathology , Female , Genetic Variation , Humans , Mitochondria/enzymology , Exome Sequencing
14.
Enzymes ; 41: 89-115, 2017.
Article in English | MEDLINE | ID: mdl-28601227

ABSTRACT

TrmD is an S-adenosyl methionine (AdoMet)-dependent methyl transferase that synthesizes the methylated m1G37 in tRNA. TrmD is specific to and essential for bacterial growth, and it is fundamentally distinct from its eukaryotic and archaeal counterpart Trm5. TrmD is unusual by using a topological protein knot to bind AdoMet. Despite its restricted mobility, the TrmD knot has complex dynamics necessary to transmit the signal of AdoMet binding to promote tRNA binding and methyl transfer. Mutations in the TrmD knot block this intramolecular signaling and decrease the synthesis of m1G37-tRNA, prompting ribosomes to +1-frameshifts and premature termination of protein synthesis. TrmD is unique among AdoMet-dependent methyl transferases in that it requires Mg2+ in the catalytic mechanism. This Mg2+ dependence is important for regulating Mg2+ transport to Salmonella for survival of the pathogen in the host cell. The strict conservation of TrmD among bacterial species suggests that a better characterization of its enzymology and biology will have a broad impact on our understanding of bacterial pathogenesis.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Methylation , RNA Processing, Post-Transcriptional , RNA, Transfer/chemistry , RNA, Transfer/metabolism , tRNA Methyltransferases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Substrate Specificity
15.
Nucleic Acids Res ; 45(7): 4081-4093, 2017 04 20.
Article in English | MEDLINE | ID: mdl-27956502

ABSTRACT

Transfer RNAs (tRNAs) perform essential tasks for all living cells. They are major components of the ribosomal machinery for protein synthesis and they also serve in non-ribosomal pathways for regulation and signaling metabolism. We describe the development of a genetically encoded fluorescent tRNA fusion with the potential for imaging in live Escherichia coli cells. This tRNA fusion carries a Spinach aptamer that becomes fluorescent upon binding of a cell-permeable and non-toxic fluorophore. We show that, despite having a structural framework significantly larger than any natural tRNA species, this fusion is a viable probe for monitoring tRNA stability in a cellular quality control mechanism that degrades structurally damaged tRNA. Importantly, this fusion is active in E. coli live-cell protein synthesis allowing peptidyl transfer at a rate sufficient to support cell growth, indicating that it is accommodated by translating ribosomes. Imaging analysis shows that this fusion and ribosomes are both excluded from the nucleoid, indicating that the fusion and ribosomes are in the cytosol together possibly engaged in protein synthesis. This fusion methodology has the potential for developing new tools for live-cell imaging of tRNA with the unique advantage of both stoichiometric labeling and broader application to all cells amenable to genetic engineering.


Subject(s)
Aptamers, Nucleotide/chemistry , Protein Biosynthesis , RNA Probes/chemistry , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Aptamers, Nucleotide/metabolism , Benzyl Compounds/chemistry , Escherichia coli/genetics , Fluorescent Dyes , Imidazolines/chemistry , Microscopy, Fluorescence , Ribosomes/metabolism , Spinacia oleracea/genetics
16.
J Biol Chem ; 291(19): 10426-36, 2016 May 06.
Article in English | MEDLINE | ID: mdl-26961879

ABSTRACT

The intrinsic apoptosis pathway occurs through the release of mitochondrial cytochrome c to the cytosol, where it promotes activation of the caspase family of proteases. The observation that tRNA binds to cytochrome c revealed a previously unexpected mode of apoptotic regulation. However, the molecular characteristics of this interaction, and its impact on each interaction partner, are not well understood. Using a novel fluorescence assay, we show here that cytochrome c binds to tRNA with an affinity comparable with other tRNA-protein binding interactions and with a molecular ratio of ∼3:1. Cytochrome c recognizes the tertiary structural features of tRNA, particularly in the core region. This binding is independent of the charging state of tRNA but is regulated by the redox state of cytochrome c. Compared with reduced cytochrome c, oxidized cytochrome c binds to tRNA with a weaker affinity, which correlates with its stronger pro-apoptotic activity. tRNA binding both facilitates cytochrome c reduction and inhibits the peroxidase activity of cytochrome c, which is involved in its release from mitochondria. Together, these findings provide new insights into the cytochrome c-tRNA interaction and apoptotic regulation.


Subject(s)
Cytochromes c/chemistry , RNA, Transfer/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Animals , Apoptosis/physiology , Cattle , Cytochromes c/genetics , Cytochromes c/metabolism , Humans , Protein Binding , Protein Structure, Quaternary , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
17.
Proteins ; 84(7): 934-47, 2016 07.
Article in English | MEDLINE | ID: mdl-27028675

ABSTRACT

Short-chain dehydrogenase/reductase (SDR) is distributed in many organisms, from bacteria to humans, and has significant roles in metabolism of carbohydrates, lipids, amino acids, and other biomolecules. An important intermediate in acidic polysaccharide metabolism is 2-keto-3-deoxy-d-gluconate (KDG). Recently, two short and long loops in Sphingomonas KDG-producing SDR enzymes (NADPH-dependent A1-R and NADH-dependent A1-R') involved in alginate metabolism were shown to be crucial for NADPH or NADH coenzyme specificity. Two SDR family enzymes-KduD from Pectobacterium carotovorum (PcaKduD) and DhuD from Streptococcus pyogenes (SpyDhuD)-prefer NADH as coenzyme, although only PcaKduD can utilize both NADPH and NADH. Both enzymes reduce 2,5-diketo-3-deoxy-d-gluconate to produce KDG. Tertiary and quaternary structures of SpyDhuD and PcaKduD and its complex with NADH were determined at high resolution (approximately 1.6 Å) by X-ray crystallography. Both PcaKduD and SpyDhuD consist of a three-layered structure, α/ß/α, with a coenzyme-binding site in the Rossmann fold; similar to enzymes A1-R and A1-R', both arrange the two short and long loops close to the coenzyme-binding site. The primary structures of the two loops in PcaKduD and SpyDhuD were similar to those in A1-R' but not A1-R. Charge neutrality and moderate space at the binding site of the nucleoside ribose 2' coenzyme region were determined to be structurally crucial for dual-coenzyme specificity in PcaKduD by structural comparison of the NADH- and NADPH-specific SDR enzymes. The corresponding site in SpyDhuD was negatively charged and spatially shallow. This is the first reported study on structural determinants in SDR family KduD related to dual-coenzyme specificity. Proteins 2016; 84:934-947. © 2016 Wiley Periodicals, Inc.


Subject(s)
Carbohydrate Dehydrogenases/chemistry , Carbohydrate Dehydrogenases/metabolism , Pectobacterium carotovorum/enzymology , Amino Acid Sequence , Crystallography, X-Ray , Gluconates/metabolism , Models, Molecular , NAD/metabolism , Pectobacterium carotovorum/chemistry , Pectobacterium carotovorum/metabolism , Protein Conformation , Sequence Alignment , Streptococcus pyogenes/chemistry , Streptococcus pyogenes/enzymology , Streptococcus pyogenes/metabolism , Substrate Specificity
18.
RNA Biol ; 13(5): 477-85, 2016 05 03.
Article in English | MEDLINE | ID: mdl-26950678

ABSTRACT

We report a Caucasian boy with intractable epilepsy and global developmental delay. Whole-exome sequencing identified the likely genetic etiology as a novel p.K212E mutation in the X-linked gene HSD17B10 for mitochondrial short-chain dehydrogenase/reductase SDR5C1. Mutations in HSD17B10 cause the HSD10 disease, traditionally classified as a metabolic disorder due to the role of SDR5C1 in fatty and amino acid metabolism. However, SDR5C1 is also an essential subunit of human mitochondrial RNase P, the enzyme responsible for 5'-processing and methylation of purine-9 of mitochondrial tRNAs. Here we show that the p.K212E mutation impairs the SDR5C1-dependent mitochondrial RNase P activities, and suggest that the pathogenicity of p.K212E is due to a general mitochondrial dysfunction caused by reduction in SDR5C1-dependent maturation of mitochondrial tRNAs.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/genetics , Developmental Disabilities/genetics , Drug Resistant Epilepsy/genetics , Mutation , Ribonuclease P/metabolism , Sequence Analysis, DNA/methods , Child , Exome , Genes, X-Linked , Humans , Male , Mitochondria/genetics , Mitochondria/metabolism , RNA, Transfer/metabolism
19.
J Biol Chem ; 290(10): 6281-92, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25605731

ABSTRACT

Glycosaminoglycans in mammalian extracellular matrices are degraded to their constituents, unsaturated uronic (glucuronic/iduronic) acids and amino sugars, through successive reactions of bacterial polysaccharide lyase and unsaturated glucuronyl hydrolase. Genes coding for glycosaminoglycan-acting lyase, unsaturated glucuronyl hydrolase, and the phosphotransferase system are assembled into a cluster in the genome of pathogenic bacteria, such as streptococci and clostridia. Here, we studied the streptococcal metabolic pathway of unsaturated uronic acids and the structure/function relationship of its relevant isomerase and dehydrogenase. Two proteins (gbs1892 and gbs1891) of Streptococcus agalactiae strain NEM316 were overexpressed in Escherichia coli, purified, and characterized. 4-Deoxy-l-threo-5-hexosulose-uronate (Dhu) nonenzymatically generated from unsaturated uronic acids was converted to 2-keto-3-deoxy-d-gluconate via 3-deoxy-d-glycero-2,5-hexodiulosonate through successive reactions of gbs1892 isomerase (DhuI) and gbs1891 NADH-dependent reductase/dehydrogenase (DhuD). DhuI and DhuD enzymatically corresponded to 4-deoxy-l-threo-5-hexosulose-uronate ketol-isomerase (KduI) and 2-keto-3-deoxy-d-gluconate dehydrogenase (KduD), respectively, involved in pectin metabolism, although no or low sequence identity was observed between DhuI and KduI or between DhuD and KduD, respectively. Genes for DhuI and DhuD were found to be included in the streptococcal genetic cluster, whereas KduI and KduD are encoded in clostridia. Tertiary and quaternary structures of DhuI and DhuD were determined by x-ray crystallography. Distinct from KduI ß-barrels, DhuI adopts an α/ß/α-barrel structure as a basic scaffold similar to that of ribose 5-phosphate isomerase. The structure of DhuD is unable to accommodate the substrate/cofactor, suggesting that conformational changes are essential to trigger enzyme catalysis. This is the first report on the bacterial metabolism of glycosaminoglycan-derived unsaturated uronic acids by isomerase and dehydrogenase.


Subject(s)
Glycosaminoglycans/chemistry , Isomerases/chemistry , Oxidoreductases/chemistry , Streptococcal Infections/enzymology , Streptococcus agalactiae/enzymology , Crystallography, X-Ray , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Glucuronates/chemistry , Glucuronates/metabolism , Glycosaminoglycans/metabolism , Iduronic Acid/chemistry , Iduronic Acid/metabolism , Isomerases/metabolism , Oxidoreductases/metabolism , Streptococcal Infections/pathology , Streptococcus agalactiae/chemistry , Streptococcus agalactiae/pathogenicity , Substrate Specificity , Uronic Acids/chemistry , Uronic Acids/metabolism
20.
J Biol Chem ; 289(48): 33198-214, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25288804

ABSTRACT

The alginate-assimilating bacterium, Sphingomonas sp. strain A1, degrades the polysaccharides to monosaccharides through four alginate lyase reactions. The resultant monosaccharide, which is nonenzymatically converted to 4-deoxy-L-erythro-5-hexoseulose uronate (DEH), is further metabolized to 2-keto-3-deoxy-D-gluconate by NADPH-dependent reductase A1-R in the short-chain dehydrogenase/reductase (SDR) family. A1-R-deficient cells produced another DEH reductase, designated A1-R', with a preference for NADH. Here, we show the identification of a novel NADH-dependent DEH reductase A1-R' in strain A1, structural determination of A1-R' by x-ray crystallography, and structure-based conversion of a coenzyme requirement in SDR enzymes, A1-R and A1-R'. A1-R' was purified from strain A1 cells and enzymatically characterized. Except for the coenzyme requirement, there was no significant difference in enzyme characteristics between A1-R and A1-R'. Crystal structures of A1-R' and A1-R'·NAD(+) complex were determined at 1.8 and 2.7 Å resolutions, respectively. Because of a 64% sequence identity, overall structures of A1-R' and A1-R were similar, although a difference in the coenzyme-binding site (particularly the nucleoside ribose 2' region) was observed. Distinct from A1-R, A1-R' included a negatively charged, shallower binding site. These differences were caused by amino acid residues on the two loops around the site. The A1-R' mutant with the two A1-R-typed loops maintained potent enzyme activity with specificity for NADPH rather than NADH, demonstrating that the two loops determine the coenzyme requirement, and loop exchange is a promising method for conversion of coenzyme requirement in the SDR family.


Subject(s)
Alginates/chemistry , Bacterial Proteins/chemistry , NADP/chemistry , Oxidoreductases/chemistry , Sphingomonas/enzymology , Alginates/metabolism , Bacterial Proteins/metabolism , Crystallography, X-Ray , Glucuronic Acid/chemistry , Glucuronic Acid/metabolism , Hexuronic Acids/chemistry , Hexuronic Acids/metabolism , NADP/metabolism , Oxidoreductases/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...