Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Antimicrob Agents Chemother ; 68(5): e0172723, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38587392

ABSTRACT

Antiviral susceptibility of influenza viruses was assessed using a high-content imaging-based neutralization test. Cap-dependent endonuclease inhibitors, baloxavir and AV5116, were superior to AV5115 against type A viruses, and AV5116 was most effective against PA mutants tested. However, these three inhibitors displayed comparable activity (EC50 8-22 nM) against type C viruses from six lineages. Banana lectin and a monoclonal antibody, YA3, targeting the hemagglutinin-esterase protein effectively neutralized some, but not all, type C viruses.


Subject(s)
Antiviral Agents , Dibenzothiepins , Triazines , Antiviral Agents/pharmacology , Humans , Triazines/pharmacology , Dibenzothiepins/pharmacology , Gammainfluenzavirus/drug effects , Gammainfluenzavirus/genetics , Morpholines/pharmacology , Pyridones/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Madin Darby Canine Kidney Cells , Dogs , Cyclopropanes/pharmacology , Influenza A virus/drug effects , Neutralization Tests , Pyridines/pharmacology
2.
Jpn J Infect Dis ; 77(2): 105-111, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38030271

ABSTRACT

Potency tests for influenza vaccines are currently performed using a single-radial immunodiffusion (SRID) assay, which requires a reference antigen and anti-hemagglutinin (HA) serum as reference reagents. Reagents must be newly prepared each time a strain used for vaccine production is modified. Therefore, establishing reference reagents of consistent quality is crucial for conducting vaccine potency tests accurately and precisely. Here, we established reference reagents for the SRID assay to conduct lot release tests of quadrivalent influenza vaccines in Japan during the 2022/23 influenza season. The potency of reference antigens during storage was confirmed. Furthermore, we evaluated the cross-reactivity of each antiserum raised against the HA protein of the 2 lineages of influenza B virus toward different lineages of influenza B virus antigens to select a suitable procedure for the SRID assay for accurate measurement. Finally, the intralaboratory reproducibility of the SRID assay using the established reference reagents was validated, and the SRID reagents had sufficient consistent quality, comparable to that of the reagents used for testing vaccines during previous influenza seasons. Our study contributes to the quality control of influenza vaccines.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , Seasons , Japan , Reproducibility of Results , Hemagglutinin Glycoproteins, Influenza Virus , Immunodiffusion/methods
3.
Euro Surveill ; 28(39)2023 09.
Article in English | MEDLINE | ID: mdl-37768560

ABSTRACT

A community cluster of influenza A(H3N2) caused by viruses with an E199G substitution in PA was detected in Nara, Japan, between February and March 2023. The three patients with these mutant viruses had not received antiviral treatment before specimen collection but patients in the same hospital had. The sequences of the mutant viruses were closely related, suggesting clonal spread in Nara. They showed reduced susceptibility to baloxavir in vitro; however, the clinical significance of the PA E199G substitution remains unclear.


Subject(s)
Influenza, Human , Thiepins , Humans , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Influenza A Virus, H3N2 Subtype/genetics , Oxazines/pharmacology , Pyridines/pharmacology , Japan , Thiepins/pharmacology , Thiepins/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Resistance, Viral/genetics
4.
Antiviral Res ; 216: 105671, 2023 08.
Article in English | MEDLINE | ID: mdl-37451629

ABSTRACT

The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2-4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Leucine , RNA-Dependent RNA Polymerase/genetics , Protease Inhibitors/pharmacology
5.
Pediatr Infect Dis J ; 42(8): e268-e273, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37079571

ABSTRACT

BACKGROUND: Advances in multiplex polymerase chain reaction (PCR) methods have enabled the simultaneous detection of multiple respiratory viruses. We aimed to estimate the clinical and virologic impacts of influenza and other respiratory virus co-infection in children. METHODS: We enrolled 38 and 35 children diagnosed with influenza and treated with baloxavir marboxil (baloxavir) and oseltamivir, respectively. We performed quantitative reverse transcription-PCR to detect and measure the levels of noninfluenza viruses from 3 nasopharyngeal swab samples collected before and on days 3 and 5 after the initial antiviral dose. We assessed patients' clinical information using questionnaires. RESULTS: One or more respiratory viruses other than influenza virus were detected in 26 (35.6%) of 73 children before antiviral treatment. The influenza virus load and clinical characteristics on the day of influenza onset were similar between children with and without virus co-infections. Of the 26 and 32 children without the emergence of the reduced baloxavir and oseltamivir susceptible variants after treatment, 8 (30.8%) and 7 (21.9%) children were dually co-infected with human rhinovirus only, respectively. The level of human rhinovirus RNA on day 0 in these children was less than -3 log 10 that of influenza virus RNA, and the human rhinovirus co-infection had no impact on the disease course either clinically or virologically. CONCLUSIONS: When multiple respiratory viruses are detected in the same patient, it is necessary to assess clinical symptoms as well as the levels of detected viruses to determine which virus contributes to the development of illness.


Subject(s)
Coinfection , Influenza, Human , Virus Diseases , Viruses , Humans , Child , Influenza, Human/complications , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Oseltamivir/therapeutic use , Coinfection/epidemiology , Coinfection/drug therapy , Antiviral Agents/therapeutic use
6.
Viruses ; 15(1)2023 01 15.
Article in English | MEDLINE | ID: mdl-36680284

ABSTRACT

The emergence and spread of antiviral-resistant influenza viruses are of great concern. To minimize the public health risk, it is important to monitor antiviral susceptibilities of influenza viruses. Analyses of the antiviral susceptibilities of influenza A and B viruses have been conducted globally; however, those of influenza C and D viruses are limited. Here, we determined the susceptibilities of influenza C viruses representing all six lineages (C/Taylor, C/Yamagata, C/Sao Paulo, C/Aichi, C/Kanagawa, and C/Mississippi) and influenza D viruses representing four lineages (D/OK, D/660, D/Yama2016, and D/Yama2019) to RNA polymerase inhibitors (baloxavir and favipiravir) by using a focus reduction assay. All viruses tested were susceptible to both drugs. We then performed a genetic analysis to check for amino acid substitutions associated with baloxavir and favipiravir resistance and found that none of the viruses tested possessed these substitutions. Use of the focus reduction assay with the genotypic assay has proven valuable for monitoring the antiviral susceptibilities of influenza C and D viruses as well as influenza A and B viruses. Antiviral susceptibility monitoring of all influenza virus types should continue in order to assess the public health risks posed by these viruses.


Subject(s)
Influenza, Human , Orthomyxoviridae , Humans , Influenza, Human/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Brazil , Drug Resistance, Viral/genetics
7.
Influenza Other Respir Viruses ; 17(1): e13090, 2023 01.
Article in English | MEDLINE | ID: mdl-36567444

ABSTRACT

The emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), prompted worldwide COVID-19 surveillance. To investigate the impact of COVID-19 on influenza activity, we used global surveillance data collected since 2019 to compare the number of cases positive for COVID-19 and for influenza across 22 representative countries (Australia, Brazil, Canada, China, Egypt, France, Germany, India, Israel, Italy, Japan, Mexico, The Netherlands, The Philippines, Poland, The Republic of Korea, South Africa, Spain, Thailand, The United Kingdom, The United States, and Vietnam). Our results demonstrate alternating prevalence of SARS-CoV-2 and influenza virus.


Subject(s)
COVID-19 , Influenza, Human , United States , Humans , Influenza, Human/epidemiology , COVID-19/epidemiology , SARS-CoV-2 , France , Spain
10.
Methods Mol Biol ; 2556: 287-302, 2022.
Article in English | MEDLINE | ID: mdl-36175640

ABSTRACT

Three types of assays--colorimetric, fluorescent, and chemiluminescent--are used to determine the sialidase (neuraminidase: NA) activity of influenza viruses. The fluorescent assay is cost-effective and applicable for many laboratories and is, therefore, commonly used for global monitoring of the NA inhibitor susceptibility of influenza viruses. Here, I describe, in detail, protocols for the fluorescence-based NA activity assay and the NA inhibition assay, which are used to determine the NA activity and NA inhibitor susceptibility, respectively, of influenza viruses.


Subject(s)
Central Nervous System Depressants , Orthomyxoviridae , Antiviral Agents/pharmacology , Biological Assay , Coloring Agents , Enzyme Inhibitors/pharmacology , Neuraminidase
12.
Nat Microbiol ; 7(8): 1252-1258, 2022 08.
Article in English | MEDLINE | ID: mdl-35705860

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host's protective immune response. Here we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against Omicron variant (B.1.1.529) sublineage BA.1 variants in Syrian hamsters. Of the FDA-approved therapeutic mAbs tested (that is, REGN10987/REGN10933, COV2-2196/COV2-2130 and S309), only COV2-2196/COV2-2130 efficiently inhibited BA.1 replication in the lungs of hamsters, and this effect was diminished against a BA.1.1 variant possessing the S-R346K substitution. In addition, treatment of BA.1-infected hamsters with molnupiravir (a SARS-CoV-2 RNA-dependent RNA polymerase inhibitor) or S-217622 (a SARS-CoV-2 protease inhibitor) strongly reduced virus replication in the lungs. These findings suggest that the use of therapeutic mAbs in Omicron-infected patients should be carefully considered due to mutations that affect efficacy, and demonstrate that the antiviral compounds molnupiravir and S-217622 are effective against Omicron BA.1 variants.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cricetinae , Humans , Mesocricetus , RNA, Viral
13.
Nature ; 607(7917): 119-127, 2022 07.
Article in English | MEDLINE | ID: mdl-35576972

ABSTRACT

The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants1,2. The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries3. Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone4, we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/pharmacology , Antibodies, Viral/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Cricetinae , Cytidine/analogs & derivatives , Drug Combinations , Hydroxylamines , Indazoles , Lactams , Leucine , Mice , Nitriles , Proline , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Triazines , Triazoles
14.
Antiviral Res ; 200: 105281, 2022 04.
Article in English | MEDLINE | ID: mdl-35292289

ABSTRACT

Global analysis of the susceptibility of influenza viruses to neuraminidase (NA) inhibitors (NAIs) and the polymerase acidic (PA) inhibitor (PAI) baloxavir was conducted by five World Health Organization Collaborating Centres for Reference and Research on Influenza during two periods (May 2018-May 2019 and May 2019-May 2020). Combined phenotypic and NA sequence-based analysis revealed that the global frequency of viruses displaying reduced or highly reduced inhibition (RI or HRI) or potential to show RI/HRI by NAIs remained low, 0.5% (165/35045) and 0.6% (159/26010) for the 2018-2019 and 2019-2020 periods, respectively. The most common amino acid substitution was NA-H275Y (N1 numbering) conferring HRI by oseltamivir and peramivir in A(H1N1)pdm09 viruses. Combined phenotypic and PA sequence-based analysis showed that the global frequency of viruses showing reduced susceptibility to baloxavir or carrying substitutions associated with reduced susceptibility was low, 0.5% (72/15906) and 0.1% (18/15692) for the 2018-2019 and 2019-2020 periods, respectively. Most (n = 61) of these viruses had I38→T/F/M/S/L/V PA amino acid substitutions. In Japan, where baloxavir use was highest, the rate was 4.5% (41/919) in the 2018-2019 period and most of the viruses (n = 32) had PA-I38T. Zoonotic viruses isolated from humans (n = 32) in different countries did not contain substitutions in NA associated with NAI RI/HRI phenotypes. One A(H5N6) virus had a dual substitution PA-I38V + PA-E199G, which may reduce susceptibility to baloxavir. Therefore, NAIs and baloxavir remain appropriate choices for the treatment of influenza virus infections, but close monitoring of antiviral susceptibility is warranted.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Amino Acid Substitution , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dibenzothiepins , Drug Resistance, Viral/genetics , Endonucleases/genetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza B virus , Morpholines , Neuraminidase/genetics , Neuraminidase/therapeutic use , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Pyridones , Triazines
16.
Res Sq ; 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35233565

ABSTRACT

The recent emergence of SARS-CoV-2 Omicron variants possessing large numbers of mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies, and antiviral drugs for COVID-19 against these variants1,2. While the original Omicron lineage, BA.1, has become dominant in many countries, BA.2 has been detected in at least 67 countries and has become dominant in the Philippines, India, and Denmark. Here, we evaluated the replicative ability and pathogenicity of an authentic infectious BA.2 isolate in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone3, we observed similar infectivity and pathogenicity in mice and hamsters between BA.2 and BA.1, and less pathogenicity compared to early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from COVID-19 convalescent individuals and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987/REGN10933, COV2-2196/COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir, and S-217622) can restrict viral infection in the respiratory organs of hamsters infected with BA.2. These findings suggest that the replication and pathogenicity of BA.2 is comparable to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron/BA.2 variants.

17.
Jpn J Infect Dis ; 75(4): 398-402, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-34980710

ABSTRACT

The circulation of avian influenza A viruses in poultry is a public health concern due to the potential transmissibility and severity of these viral infections. Monitoring the susceptibility of these viruses to antivirals is important for developing measures to strengthen the level of preparedness against influenza pandemics. However, drug susceptibility information on these viruses is limited. Here, we determined the susceptibilities of avian influenza A(H5N1), A(H5N2), A(H5N8), A(H7N7), A(H7N9), A(H9N1), and A(H9N2) viruses isolated in Japan to the antivirals approved for use there: an M2 inhibitor (amantadine), neuraminidase inhibitors (oseltamivir, peramivir, zanamivir, and laninamivir) and RNA polymerase inhibitors (baloxavir and favipiravir). Genotypic methods that detect amino acid substitutions associated with antiviral resistance and phenotypic methods that assess phenotypic viral susceptibility to drugs have revealed that these avian influenza A viruses are susceptible to neuraminidase and RNA polymerase inhibitors. These results suggest that neuraminidase and RNA polymerase inhibitors currently approved in Japan could be a treatment option against influenza A virus infections in humans.


Subject(s)
Drug Resistance, Viral , Influenza in Birds , Influenza, Human , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA-Directed RNA Polymerases , Drug Resistance, Viral/genetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N2 Subtype/drug effects , Influenza A Virus, H7N7 Subtype/drug effects , Influenza A Virus, H7N9 Subtype/drug effects , Influenza A Virus, H9N2 Subtype/drug effects , Influenza in Birds/epidemiology , Influenza in Birds/virology , Influenza, Human/epidemiology , Influenza, Human/virology , Japan/epidemiology , Neuraminidase/genetics , Neuraminidase/metabolism , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Poultry
19.
Antiviral Res ; 194: 105158, 2021 10.
Article in English | MEDLINE | ID: mdl-34363859

ABSTRACT

It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , Influenza, Human/drug therapy , Animals , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Dibenzothiepins/pharmacology , Drug Resistance, Viral , Enzyme Inhibitors/pharmacology , Humans , Influenza, Human/virology , Knowledge , Morpholines/pharmacology , Neuraminidase/therapeutic use , Oseltamivir/pharmacology , Pyridones/pharmacology , SARS-CoV-2/drug effects , Triazines/pharmacology , Virus Replication/drug effects , Zanamivir/pharmacology
20.
J Infect Dis ; 224(10): 1735-1741, 2021 11 22.
Article in English | MEDLINE | ID: mdl-33837427

ABSTRACT

BACKGROUND: We aimed to detect influenza variants with reduced susceptibility to baloxavir marboxil (baloxavir) and oseltamivir and identify differences in the clinical course between children with and without these variants after antiviral treatment. METHODS: During the 2019-2020 influenza season, we enrolled children with confirmed influenza A (20 treated with baloxavir and 16 with oseltamivir). We analyzed patients' sequential viral RNA loads and infectious virus titers, the drug susceptibilities of clinical isolates, and amino acid substitutions in the viral polymerase acidic protein subunits or neuraminidase. We assessed patients' clinical information using questionnaires. RESULTS: All viral RNA loads and virus titers were significantly decreased after treatment, but we detected baloxavir-resistant and oseltamivir-resistant variants in 5 of 20 and 3 of 16 patients, respectively. The duration of fever was similar between patients with and without the variants, but infectious viral shedding lasted 3 days longer in patients with baloxavir-resistant variants. In addition, the duration to improvement of clinical symptoms was longer in these patients (75.0 vs 29.5 hours; P = .106). CONCLUSIONS: After antiviral treatment, the emergence of baloxavir-resistant variants may affect the patients' clinical course, but oseltamivir-resistant variants had no clinical impact.


Subject(s)
Influenza, Human , Thiepins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Child , Dibenzothiepins , Drug Resistance, Viral/genetics , Humans , Influenza, Human/drug therapy , Morpholines , Neuraminidase , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Oxazines/pharmacology , Protein Subunits/pharmacology , Protein Subunits/therapeutic use , Pyridines/pharmacology , Pyridones/therapeutic use , RNA, Viral , Seasons , Thiepins/pharmacology , Thiepins/therapeutic use , Triazines/pharmacology , Triazines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...