Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Heart Vessels ; 39(6): 524-538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38553520

ABSTRACT

The efficacy of convolutional neural network (CNN)-enhanced electrocardiography (ECG) in detecting hypertrophic cardiomyopathy (HCM) and dilated HCM (dHCM) remains uncertain in real-world applications. This retrospective study analyzed data from 19,170 patients (including 140 HCM or dHCM) in the Shinken Database (2010-2017). We evaluated the sensitivity, positive predictive rate (PPR), and F1 score of CNN-enhanced ECG in a ''basic diagnosis'' model (total disease label) and a ''comprehensive diagnosis'' model (including disease subtypes). Using all-lead ECG in the "basic diagnosis" model, we observed a sensitivity of 76%, PPR of 2.9%, and F1 score of 0.056. These metrics improved in cases with a diagnostic probability of ≥ 0.9 and left ventricular hypertrophy (LVH) on ECG: 100% sensitivity, 8.6% PPR, and 0.158 F1 score. The ''comprehensive diagnosis'' model further enhanced these figures to 100%, 13.0%, and 0.230, respectively. Performance was broadly consistent across CNN models using different lead configurations, particularly when including leads viewing the lateral walls. While the precision of CNN models in detecting HCM or dHCM in real-world settings is initially low, it improves by targeting specific patient groups and integrating disease subtype models. The use of ECGs with fewer leads, especially those involving the lateral walls, appears comparably effective.


Subject(s)
Cardiomyopathy, Hypertrophic , Electrocardiography , Neural Networks, Computer , Humans , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/physiopathology , Cardiomyopathy, Hypertrophic/complications , Electrocardiography/methods , Retrospective Studies , Male , Female , Middle Aged , Predictive Value of Tests , Adult , Aged
2.
Circ Rep ; 6(3): 46-54, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38464990

ABSTRACT

Background: We developed a convolutional neural network (CNN) model to detect atrial fibrillation (AF) using the sinus rhythm ECG (SR-ECG). However, the diagnostic performance of the CNN model based on different ECG leads remains unclear. Methods and Results: In this retrospective analysis of a single-center, prospective cohort study, we identified 616 AF cases and 3,412 SR cases for the modeling dataset among new patients (n=19,170). The modeling dataset included SR-ECGs obtained within 31 days from AF-ECGs in AF cases and SR cases with follow-up ≥1,095 days. We evaluated the CNN model's performance for AF detection using 8-lead (I, II, and V1-6), single-lead, and double-lead ECGs through 5-fold cross-validation. The CNN model achieved an area under the curve (AUC) of 0.872 (95% confidence interval (CI): 0.856-0.888) and an odds ratio of 15.24 (95% CI: 12.42-18.72) for AF detection using the eight-lead ECG. Among the single-lead and double-lead ECGs, the double-lead ECG using leads I and V1 yielded an AUC of 0.871 (95% CI: 0.856-0.886) with an odds ratio of 14.34 (95% CI: 11.64-17.67). Conclusions: We assessed the performance of a CNN model for detecting AF using eight-lead, single-lead, and double-lead SR-ECGs. The model's performance with a double-lead (I, V1) ECG was comparable to that of the 8-lead ECG, suggesting its potential as an alternative for AF screening using SR-ECG.

3.
Int J Cardiol Heart Vasc ; 51: 101389, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38550273

ABSTRACT

Background: The potential of utilizing artificial intelligence with electrocardiography (ECG) for initial screening of aortic dissection (AD) is promising. However, achieving a high positive predictive rate (PPR) remains challenging. Methods and results: This retrospective analysis of a single-center, prospective cohort study (Shinken Database 2010-2017, N = 19,170) used digital 12-lead ECGs from initial patient visits. We assessed a convolutional neural network (CNN) model's performance for AD detection with eight-lead (I, II, and V1-6), single-lead, and double-lead (I, II) ECGs via five-fold cross-validation. The mean age was 63.5 ± 12.5 years for the AD group (n = 147) and 58.1 ± 15.7 years for the non-AD group (n = 19,023). The CNN model achieved an area under the curve (AUC) of 0.936 (standard deviation [SD]: 0.023) for AD detection with eight-lead ECGs. In the entire cohort, the PPR was 7 %, with 126 out of 147 AD cases correctly diagnosed (sensitivity 86 %). When applied to patients with D-dimer levels ≥1 µg/dL and a history of hypertension, the PPR increased to 35 %, with 113 AD cases correctly identified (sensitivity 86 %). The single V1 lead displayed the highest diagnostic performance (AUC: 0.933, SD: 0.03), with PPR improvement from 8 % to 38 % within the same population. Conclusions: Our CNN model using ECG data for AD detection achieved an over 30% PPR when applied to patients with elevated D-dimer levels and hypertension history while maintaining sensitivity. A similar level of performance was observed with a single-lead V1 ECG in the CNN model.

4.
Int J Cardiol Heart Vasc ; 46: 101211, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37152425

ABSTRACT

Background: This study sought to develop an artificial intelligence-derived model to detect the dilated phase of hypertrophic cardiomyopathy (dHCM) on digital electrocardiography (ECG) and to evaluate the performance of the model applied to multiple-lead or single-lead ECG. Methods: This is a retrospective analysis using a single-center prospective cohort study (Shinken Database 2010-2017, n = 19,170). After excluding those without a normal P wave on index ECG (n = 1,831) and adding dHCM patients registered before 2009 (n = 39), 17,378 digital ECGs were used. Totally 54 dHCM patients were identified of which 11 diagnosed at baseline, 4 developed during the time course, and 39 registered before 2009. The performance of the convolutional neural network (CNN) model for detecting dHCM was evaluated using eight-lead (I, II, and V1-6), single-lead, and double-lead (I, II) ECGs with the five-fold cross validation method. Results: The area under the curve (AUC) of the CNN model to detect dHCM (n = 54) with eight-lead ECG was 0.929 (standard deviation [SD]: 0.025) and the odds ratio was 38.64 (SD 9.10). Among the single-lead and double-lead ECGs, the AUC was highest with the single lead of V5 (0.953 [SD: 0.038]), with an odds ratio of 58.89 (SD:68.56). Conclusion: Compared with the performance of eight-lead ECG, the most similar performance was achieved with the model with a single V5 lead, suggesting that this single-lead ECG can be an alternative to eight-lead ECG for the screening of dHCM.

5.
Int J Cardiol Heart Vasc ; 44: 101172, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36654885

ABSTRACT

Background: There is increasing evidence that 12-lead electrocardiograms (ECG) can be used to predict biological age, which is associated with cardiovascular events. However, the utility of artificial intelligence (AI)-predicted age using ECGs remains unclear. Methods: Using a single-center database, we developed an AI-enabled ECG using 17 042 sinus rhythm ECGs (SR-ECG) to predict chronological age (CA) with a convolutional neural network that yields AI-predicted age. Using the 5-fold cross validation method, AI-predicted age deriving from the test dataset was yielded for all ECGs. The incidence by AgeDiff and the areas under the curve by receiver operating characteristic curve with AI-predicted age for cardiovascular events were analyzed. Results: During the mean follow-up period of 460.1 days, there were 543 cardiovascular events. The annualized incidence of cardiovascular events was 2.24 %, 2.44 %, and 3.01 %/year for patients with AgeDiff < -6, -6 to ≤6, and >6 years, respectively. The areas under the curve for cardiovascular events with CA and AI-predicted age, respectively, were 0.673 and 0.679 (Delong's test, P = 0.388) for all patients; 0.642 and 0.700 (P = 0.003) for younger patients (CA < 60 years); and 0.584 and 0.570 (P = 0.268) for older patients (CA ≥ 60 years). Conclusions: AI-predicted age using 12-lead ECGs showed superiority in predicting cardiovascular events compared with CA in younger patients, but not in older patients.

6.
Int J Cardiol Heart Vasc ; 38: 100954, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35059494

ABSTRACT

BACKGROUND: This study aimed to increase the knowledge on how to enhance the performance of artificial intelligence (AI)-enabled electrocardiography (ECG) to detect atrial fibrillation (AF) on sinus rhythm ECG (SR-ECG). METHODS: It is a retrospective analysis of a single-center, prospective cohort study (Shinken Database). We developed AI-enabled ECG using SR-ECG to predict AF with a convolutional neural network (CNN). Among new patients in our hospital (n = 19,170), 276 AF label (having ECG on AF [AF-ECG] in the ECG database) and 1896 SR label with following three conditions were identified in the derivation dataset: (1) without structural heart disease, (2) in AF label, SR-ECG was taken within 31 days from AF-ECG, and (3) in SR label, follow-up ≥ 1,095 days. Three patterns of AF label were analyzed by timing of SR-ECG to AF-ECG (before/after/before-or-after, CNN algorithm 1 to 3). The outcome measurement was area under the curve (AUC), sensitivity, specificity, accuracy, and F1 score. As an extra-testing dataset, the performance of AI-enabled ECG was tested in patients with structural heart disease. RESULTS: The AUC of AI-enabled ECG with CNN algorithm 1, 2, and 3 in the derivation dataset was 0.83, 0.88, and 0.86, respectively; when tested in patients with structural heart disease, 0.75, 0.81, and 0.78, respectively. CONCLUSION: We confirmed high performance of AI-enabled ECG to detect AF on SR-ECG in patients without structural heart disease. The performance enhanced especially when SR-ECG after index AF-ECG was included in the algorithm, which was consistent in patients with structural heart disease.

7.
Sci Rep ; 8(1): 9263, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29915185

ABSTRACT

This paper proposes a novel non-invasive method for assessing the vascular endothelial function of lower-limb arteries based on the dilation rate of air-cuff plethysmograms measured using the oscillometric approach. The principle of evaluating vascular endothelial function involves flow-mediated dilation. In the study conducted, blood flow in the dorsal pedis artery was first monitored while lower-limb cuff pressure was applied using the proposed system. The results showed blood flow was interrupted when the level of pressure was at least 50 mmHg higher than the subject's lower-limb systolic arterial pressure and that blood flow velocity increased after cuff release. Next, values of the proposed index, %ezFMDL, for assessing the vascular endothelial function of lower-limb arteries were determined from 327 adult subjects: 87 healthy subjects, 150 subjects at high risk of arteriosclerosis and 90 patients with cardiovascular disease (CAD). The mean values and standard deviations calculated using %ezFMDL were 30.5 ± 12.0% for the healthy subjects, 23.6 ± 12.7% for subjects at high risk of arteriosclerosis and 14.5 ± 15.4% for patients with CAD. The %ezFMDL values for the subjects at high risk of arteriosclerosis and the patients with CAD were significantly lower than those for the healthy subjects (p < 0.01). The proposed method may have potential for clinical application.


Subject(s)
Endothelium, Vascular/physiology , Lower Extremity/physiology , Vasodilation/physiology , Adult , Area Under Curve , Blood Flow Velocity , Female , Humans , Male , ROC Curve , Regional Blood Flow/physiology , Young Adult
8.
Atherosclerosis ; 229(2): 324-30, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23880183

ABSTRACT

BACKGROUND: It is clinically important to estimate the degree of endothelial dysfunction. Several methods have been used to assess endothelial function in humans. Recently, we developed a new noninvasive method for measurement of vascular response to reactive hyperemia in the brachial artery, named enclosed zone flow-mediated vasodilation (ezFMD). The purpose of this study was to determine the validity of ezFMD for assessment of endothelial function. METHODS AND RESULTS: We measured ezFMD by a new device using an oscillometric method and conventional FMD using ultrasonography in 306 subjects, including patients with hypertension, dyslipidemia, and diabetes mellitus (218 men and 88 women, 30 ± 16 yr). Univariate regression analysis revealed that ezFMD significantly correlated with age (r = -0.42, P < 0.0001), body mass index (r = -0.13, P = 0.028), systolic blood pressure (r = -0.15, P = 0.009), diastolic blood pressure (r = -0.14, P = 0.011), fasting glucose level (r = -0.27, P = 0.006), smoking (r = -0.21, P = 0.007) and baseline pulse wave amplitude (r = -0.51, P < 0.0001). ezFMD significantly correlated with conventional FMD (r = 0.34, P < 0.0001). Multiple regression analysis revealed that age (P = 0.002), body mass index (P = 0.013), systolic blood pressure (P = 0.009), smoking (P = 0.004) and baseline pulse wave amplitude (P < 0.001) were independent predictors of ezFMD. CONCLUSIONS: These findings suggest that measurement of ezFMD, a novel noninvasive and simple method, may be useful for determination of vascular diameter response to reactive hyperemia. Since ezFMD is automatically measured by a device with an oscillometric method, measurement of ezFMD is easier and less biased than that of conventional FMD.


Subject(s)
Atherosclerosis/diagnosis , Atherosclerosis/physiopathology , Endothelium, Vascular/physiology , Oscillometry/methods , Regional Blood Flow/physiology , Vasodilation/physiology , Adolescent , Adult , Blood Pressure/physiology , Brachial Artery/physiology , Diabetes Mellitus/physiopathology , Dyslipidemias/physiopathology , Female , Humans , Hyperemia/physiopathology , Hypertension/physiopathology , Male , Middle Aged , Multivariate Analysis , Oscillometry/instrumentation , Young Adult
9.
Med Biol Eng Comput ; 50(12): 1239-47, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23054376

ABSTRACT

Measurement of flow-mediated dilatation (FMD) is the conventional non-invasive method for assessment of endothelial function; however, it requires an expensive ultrasound system and high levels of technical skill. Therefore, we developed a novel method for measurement of endothelial function, namely, measurement of ezFMD. ezFMD estimates the degree of vasodilatation from the oscillation signals transmitted to a sphygmomanometer cuff attached to the upper arm. The objective of this study was to validate the principle underlying the measurement of ezFMD, and to evaluate the repeatability of the ezFMD measurements. We observed the blood vessel behavior and oscillometric pattern in ten subjects. When the cuff was inflated to the level of the mean blood pressure, the oscillation amplitude increased with increasing degree of vasodilatation. In experiment to evaluate the repeatability of the ezFMD measurement, the average difference between the paired measurements was 3.7 %, the standard deviation was 11.5 %, and the average coefficient of variation value for the 11 paired measurements was 23.7 %. These results suggest the validity of the principle underlying the measurement of the ezFMD for the assessment of endothelial function. And, this study suggests that the repeatability of the ezFMD measurements is superior to that of the conventional measurement of FMD.


Subject(s)
Diagnostic Techniques, Cardiovascular , Endothelium, Vascular/physiology , Signal Processing, Computer-Assisted , Adult , Algorithms , Brachial Artery/physiology , Humans , Male , Middle Aged , Oscillometry , Reproducibility of Results , Sphygmomanometers , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL