Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Transl Neurodegener ; 13(1): 6, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38247000

ABSTRACT

Neurodegenerative disorders present complex pathologies characterized by various interconnected factors, including the aggregation of misfolded proteins, oxidative stress, neuroinflammation and compromised blood-brain barrier (BBB) integrity. Addressing such multifaceted pathways necessitates the development of multi-target therapeutic strategies. Emerging research indicates that probucol, a historic lipid-lowering medication, offers substantial potential in the realm of neurodegenerative disease prevention and treatment. Preclinical investigations have unveiled multifaceted cellular effects of probucol, showcasing its remarkable antioxidative and anti-inflammatory properties, its ability to fortify the BBB and its direct influence on neural preservation and adaptability. These diverse effects collectively translate into enhancements in both motor and cognitive functions. This review provides a comprehensive overview of recent findings highlighting the efficacy of probucol and probucol-related compounds in the context of various neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and cognitive impairment associated with diabetes.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Neurodegenerative Diseases/drug therapy , Probucol/therapeutic use , Blood-Brain Barrier
2.
Front Endocrinol (Lausanne) ; 14: 1224418, 2023.
Article in English | MEDLINE | ID: mdl-37850093

ABSTRACT

Introduction: Type 2 diabetes (T2D) is associated with chronic inflammation and neurovascular changes that lead to functional impairment and atrophy in neural-derived tissue. A reduction in retinal thickness is an early indicator of diabetic retinopathy (DR), with progressive loss of neuroglia corresponding to DR severity. The brain undergoes similar pathophysiological events as the retina, which contribute to T2D-related cognitive decline. Methods: This study explored the relationship between retinal thinning and cognitive decline in the LepR db/db model of T2D. Diabetic db/db and non-diabetic db/+ mice aged 14 and 28 weeks underwent cognitive testing in short and long-term memory domains and in vivo retinal imaging using optical coherence tomography (OCT), followed by plasma metabolic measures and ex vivo quantification of neuroinflammation, oxidative stress and microvascular leakage. Results: At 28 weeks, mice exhibited retinal thinning in the ganglion cell complex and inner nuclear layer, concomitant with diabetic insulin resistance, memory deficits, increased expression of inflammation markers and cerebrovascular leakage. Interestingly, alterations in retinal thickness at both experimental timepoints were correlated with cognitive decline and elevated immune response in the brain and retina. Discussion: These results suggest that changes in retinal thickness quantified with in vivo OCT imaging may be an indicator of diabetic cognitive dysfunction and neuroinflammation.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Mice , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/diagnostic imaging , Diabetes Mellitus, Experimental/metabolism , Neuroinflammatory Diseases , Blood-Brain Barrier/metabolism , Retina , Diabetic Retinopathy/metabolism , Inflammation/diagnostic imaging , Inflammation/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism
3.
Genes Nutr ; 18(1): 2, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36841786

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder pathologically characterized by brain parenchymal abundance of amyloid-beta (Aß) and the accumulation of lipofuscin material that is rich in neutral lipids. However, the mechanisms for aetiology of AD are presently not established. There is increasing evidence that metabolism of lipoprotein-Aß in blood is associated with AD risk, via a microvascular axis that features breakdown of the blood-brain barrier, extravasation of lipoprotein-Aß to brain parenchyme and thereafter heightened inflammation. A peripheral lipoprotein-Aß/capillary axis for AD reconciles alternate hypotheses for a vascular, or amyloid origin of disease, with amyloidosis being probably consequential. Dietary fats may markedly influence the plasma abundance of lipoprotein-Aß and by extension AD risk. Similarly, apolipoprotein E (Apo E) serves as the primary ligand by which lipoproteins are cleared from plasma via high-affinity receptors, for binding to extracellular matrices and thereafter for uptake of lipoprotein-Aß via resident inflammatory cells. The epsilon APOE ε4 isoform, a major risk factor for AD, is associated with delayed catabolism of lipoproteins and by extension may increase AD risk due to increased exposure to circulating lipoprotein-Aß and microvascular corruption.

4.
Anal Bioanal Chem ; 415(7): 1357-1369, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36705732

ABSTRACT

Despite its critical role in neurodevelopment and brain function, vitamin D (vit-D) homeostasis, metabolism, and kinetics within the central nervous system remain largely undetermined. Thus, it is of critical importance to establish an accurate, highly sensitive, and reproducible method to quantitate vit-D in brain tissue. Here, we present a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method and for the first time, demonstrate detection of seven major vit-D metabolites in brain tissues of C57BL/6J wild-type mice, namely 1,25(OH)2D3, 3-epi-1,25(OH)2D3, 1,25(OH)2D2, 25(OH)D3, 25(OH)D2, 24,25(OH)2D3, and 24,25(OH)2D2. Chromatographic separation was achieved on a pentaflurophenyl column with 3 mM ammonium formate water/methanol [A] and 3 mM ammonium formate methanol/isopropanol [B] mobile phase components. Detection was by positive ion electrospray tandem mass spectrometry with the EVOQ elite triple quadrupole mass spectrometer with an Advance ultra-high-performance liquid chromatograph and online extraction system. Calibration standards of each metabolite prepared in brain matrices were used to validate the detection range, precision, accuracy, and recovery. Isotopically labelled analogues, 1,25(OH)2D3-d3, 25(OH)D3-c5, and 24,25(OH)2D3-d6, served as the internal standards for the closest molecular-related metabolite in all measurements. Standards between 1 fg/mL and 10 ng/mL were injected with a resulting linear range between 0.001 and 1 ng, with an LLOD and LLOQ of 1 pg/mL and 12.5 pg/mL, respectively. The intra-/inter-day precision and accuracy for measuring brain vit-D metabolites ranged between 0.12-11.53% and 0.28-9.11%, respectively. Recovery in acetonitrile ranged between 99.09 and 106.92% for all metabolites. Collectively, the sensitivity and efficiency of our method supersedes previously reported protocols used to measure vit-D and to our knowledge, the first protocol to reveal the abundance of 25(OH)D2, 1,25(OH)D2, and 24,25(OH)2D2, in brain tissue of any species. This technique may be important in supporting the future advancement of pre-clinical research into the function of vit-D in neurophysiological and neuropsychiatric disorders, and neurodegeneration.


Subject(s)
Methanol , Tandem Mass Spectrometry , Animals , Mice , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Mice, Inbred C57BL , Vitamin D , Vitamins , Brain
5.
Analyst ; 147(23): 5274-5282, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36346247

ABSTRACT

Magnetic resonance imaging (MRI) is the gold standard method to study brain anatomy in vivo. Using MRI, subtle alterations to white matter structures in the brain are observed prior to cognitive decline associated with the ageing process, and neurodegenerative diseases such as Alzheimer's disease. Detection of such alterations provides hope for early clinical diagnosis. While MRI is essential to detect subtle alterations to brain structure in vivo, the technique is less suited to study and image the distribution of biochemical markers within specific brain structures. Consequently, the chemical changes that drive, or are associated with MRI-detectable alterations to white matter are not well understood. Herein, we describe (to the best of our knowledge) the first application of a complementary imaging approach that incorporates in vivo MRI with ex vivo Fourier transform infrared (FTIR) spectroscopic imaging on the same brain tissue. The combined workflow is used to detect and associate markers of altered biochemistry (FTIR) with anatomical changes to brain white matter (MRI). We have applied this combination of techniques to the senescence accelerated murine prone strain 8 (SAMP8) mouse model (n = 6 animals in each group, analysed across two ageing time points, 6 and 12 months). The results have demonstrated alterations to lipid composition and markers of disturbed metabolism during ageing are associated with loss of white matter volume.


Subject(s)
White Matter , Animals , Mice , White Matter/diagnostic imaging , White Matter/metabolism , White Matter/pathology , Brain Chemistry , Fourier Analysis , Spectroscopy, Fourier Transform Infrared , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Aging , Neuroimaging
6.
Laryngoscope Investig Otolaryngol ; 7(5): 1568-1574, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36258860

ABSTRACT

Objective: This study aimed to identify significant differences in cochlea microvessel size between a diabetic mouse model (db/db) and normal mice using three-dimensional (3D) quantitative analysis. Methods: Six control heterozygote db/+ as well as 18 male B6/BKS(D)-Leprdb/J (db/db) mice aged 14 (n = 9) and 28 (n = 9) weeks were examined. After clearing the cochlea, we reconstructed the 3D volumes of the spiral modiolar artery (SMA) in the cochlea using light-sheet microscopy and analyzed vessel wall thickness, cross-sectional area, short and long diameter, and vessel height. Results: The average SMA-wall thickness in the db/db-mouse group (3.418 ± 0.328 µm) was greater than that in the control group (2.388 ± 0.411 µm). The average cross-sectional outer area, short diameter, and long diameter of the SMA in db/db mice were significantly larger than those in control mice (all p < 0.001). The cross-sectional areas increased with age (control: 221.782 ± 121.230 µm, 14 weeks; 294.378 ± 151.008 µm, and 28 weeks; 312.925 ± 147.943 µm). Conclusion: The db/db mice had thicker and larger proximal-SMA vessel walls and diameters than control mice, respectively, thus potentially inducing increased blood viscosity or vascular insufficiency and aggravating hearing loss in type 2 diabetes mellitus. Level of Evidence: IIb.

7.
Pharm Res ; 38(9): 1477-1484, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34480263

ABSTRACT

The evidence shows that individuals with type-1 diabetes mellitus (T1DM) are at greater risk of accelerated cognitive impairment and dementia. Although, to date the mechanisms are largely unknown. An emerging body of literature indicates that dysfunction of cerebral neurovascular network and plasma dyshomeostasis of soluble amyloid-ß in association with impaired lipid metabolism are central to the onset and progression of cognitive deficits and dementia. However, the latter has not been extensively considered in T1DM. Therefore, in this review, we summarised the literature concerning altered lipid metabolism and cerebrovascular function in T1DM as an implication for potential pathways leading to cognitive decline and dementia.


Subject(s)
Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Glucose/metabolism , Amyloid , Animals , Humans , Lipid Metabolism/physiology
8.
Sci Rep ; 11(1): 9261, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927338

ABSTRACT

Repeated sub-concussive impact (e.g. soccer ball heading), a significantly lighter form of mild traumatic brain injury, is increasingly suggested to cumulatively alter brain structure and compromise neurobehavioural function in the long-term. However, the underlying mechanisms whereby repeated long-term sub-concussion induces cerebral structural and neurobehavioural changes are currently unknown. Here, we utilised an established rat model to investigate the effects of repeated sub-concussion on size of lateral ventricles, cerebrovascular blood-brain barrier (BBB) integrity, neuroinflammation, oxidative stress, and biochemical distribution. Following repeated sub-concussion 3 days per week for 2 weeks, the rats showed significantly enlarged lateral ventricles compared with the rats receiving sham-only procedure. The sub-concussive rats also presented significant BBB dysfunction in the cerebral cortex and hippocampal formation, whilst neuromotor function assessed by beamwalk and rotarod tests were comparable to the sham rats. Immunofluorescent and spectroscopic microscopy analyses revealed no significant changes in neuroinflammation, oxidative stress, lipid distribution or protein aggregation, within the hippocampus and cortex. These data collectively indicate that repeated sub-concussion for 2 weeks induce significant ventriculomegaly and BBB disruption, preceding neuromotor deficits.


Subject(s)
Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain Concussion/metabolism , Brain Concussion/pathology , Hydrocephalus/metabolism , Hydrocephalus/pathology , Animals , Female , Inflammation/metabolism , Inflammation/pathology , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Oxidative Stress/physiology , Rats
9.
Curr Neuropharmacol ; 19(7): 1101-1154, 2021.
Article in English | MEDLINE | ID: mdl-33388021

ABSTRACT

BACKGROUND: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterised by repetitive behaviours, cognitive rigidity/inflexibility, and social-affective impairment. Unfortunately, no gold-standard treatments exist to alleviate the core socio-behavioural impairments of ASD. Meanwhile, the prosocial empathogen/entactogen 3,4-methylene-dioxy-methamphetamine (MDMA) is known to enhance sociability and empathy in both humans and animal models of psychological disorders. OBJECTIVE: We review the evidence obtained from behavioural tests across the current literature, showing how MDMA can induce prosocial effects in animals and humans, where controlled experiments were able to be performed. METHODS: Six electronic databases were consulted. The search strategy was tailored to each database. Only English-language papers were reviewed. Behaviours not screened in this review may have affected the core ASD behaviours studied. Molecular analogues of MDMA have not been investigated. RESULTS: We find that the social impairments may potentially be alleviated by postnatal administration of MDMA producing prosocial behaviours in mostly the animal model. CONCLUSION: MDMA and/or MDMA-like molecules appear to be an effective pharmacological treatment for the social impairments of autism, at least in animal models. Notably, clinical trials based on MDMA use are now in progress. Nevertheless, larger and more extended clinical studies are warranted to prove the assumption that MDMA and MDMA-like molecules have a role in the management of the social impairments of autism.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , N-Methyl-3,4-methylenedioxyamphetamine , Animals , Autism Spectrum Disorder/drug therapy , Autistic Disorder/drug therapy , Disease Models, Animal , Humans , Social Behavior
10.
Metallomics ; 12(12): 2134-2144, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33300524

ABSTRACT

Zinc is a prominent trace metal required for normal memory function. Memory loss and cognitive decline during natural ageing and neurodegenerative disease have been associated with altered brain-Zn homeostasis. Yet, the exact chemical pathways through which Zn influences memory function during health, natural ageing, or neurodegenerative disease remain unknown. The gap in the literature may in part be due to the difficulty to simultaneously image, and therefore, study the different chemical forms of Zn within the brain (or biological samples in general). To this extent, we have begun developing and optimising protocols that incorporate X-ray absorption near-edge structure (XANES) spectroscopic analysis of tissue at the Zn K-edge as an analytical tool to study Zn speciation in the brain. XANES is ideally suited for this task as all chemical forms of Zn are detected, the technique requires minimal sample preparation that may otherwise redistribute or alter the chemical form of Zn, and the Zn K-edge has known sensitivity to coordination geometry and ligand type. Herein, we report our initial results where we fit K-edge spectra collected from micro-dissected flash-frozen brain tissue, to a spectral library prepared from standard solutions, to demonstrate differences in the chemical form of Zn that exist between two brain regions, the hippocampus and cerebellum. Lastly, we have used an X-ray microprobe to demonstrate differences in Zn speciation within sub-regions of thin air-dried sections of the murine hippocampus; but, the corresponding results highlight that the chemical form of Zn is easily perturbed by sample preparation such as tissue sectioning or air-drying, which must be a critical consideration for future work.


Subject(s)
Brain Chemistry , Zinc/analysis , Animals , Cations, Divalent/analysis , Male , Rats, Sprague-Dawley , X-Ray Absorption Spectroscopy
11.
Nutrients ; 12(8)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824835

ABSTRACT

Studies suggest that migraine pain has a vascular component. The prevailing dogma is that peripheral vasoconstriction activates baroreceptors in central, large arteries. Dilatation of central vessels stimulates nociceptors and induces cortical spreading depression. Studies investigating nitric oxide (NO) donors support the indicated hypothesis that pain is amplified when acutely administered. In this review, we provide an alternate hypothesis which, if substantiated, may provide therapeutic opportunities for attenuating migraine frequency and severity. We suggest that in migraines, heightened sympathetic tone results in progressive central microvascular constriction. Suboptimal parenchymal blood flow, we suggest, activates nociceptors and triggers headache pain onset. Administration of NO donors could paradoxically promote constriction of the microvasculature as a consequence of larger upstream central artery vasodilatation. Inhibitors of NO production are reported to alleviate migraine pain. We describe how constriction of larger upstream arteries, induced by NO synthesis inhibitors, may result in a compensatory dilatory response of the microvasculature. The restoration of central capillary blood flow may be the primary mechanism for pain relief. Attenuating the propensity for central capillary constriction and promoting a more dilatory phenotype may reduce frequency and severity of migraines. Here, we propose consideration of two dietary nutraceuticals for reducing migraine risk: L-arginine and aged garlic extracts.


Subject(s)
Arginine/administration & dosage , Arginine/pharmacology , Dietary Supplements , Garlic/chemistry , Migraine Disorders/diet therapy , Migraine Disorders/prevention & control , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Vasoconstriction/drug effects , Vasodilation/drug effects , Cerebral Arteries/physiopathology , Humans , Microvessels/physiopathology , Migraine Disorders/etiology , Migraine Disorders/physiopathology , Nitric Oxide/metabolism , Nitric Oxide Donors/adverse effects , Nitric Oxide Donors/antagonists & inhibitors , Nociceptors/physiology , Pressoreceptors/physiopathology , Severity of Illness Index
12.
Dev Neurosci ; 42(1): 12-48, 2020.
Article in English | MEDLINE | ID: mdl-32810856

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by repetitive behaviours, cognitive rigidity/inflexibility, and social-affective impairment. Unfortunately, few pharmacological treatments exist to alleviate these socio-behavioural impairments. Prenatal administration of valproic acid (VPA) has become an accepted animal model of ASD and has been extensively used to explore new pharmacotherapies in rodents. We conducted a systematic review of the behavioural impairments induced by the VPA model in rodents, with specific reference to 3 core socio-behavioural alterations associated with ASD: repetitive behaviours, cognitive rigidity/inflexibility, and social-affective impairment. We systematically reviewed studies attempting to alleviate these core behavioural alterations using pharmacological means. We include 132 studies exploring the prenatal effects of VPA in rodents. Gestational exposure to VPA in rodents has significant effects on rodent-equivalent measures of the 3 core behavioural traits characteristic of ASD in humans, inducing social impairments, repetitive behaviour, and cognitive rigidity/inflexibility after birth. This model's validity has seen it used to test potential drug treatments for ASD and is likely to continue doing so. We conclude the rodent VPA model may be suitable to examine future therapeutic interventions for ASD, providing an overview of the progress made so far.


Subject(s)
Anticonvulsants/therapeutic use , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Behavior, Animal/drug effects , Valproic Acid/pharmacology , Animals , Disease Models, Animal , Humans , Rodentia , Social Behavior
13.
Front Nutr ; 7: 58, 2020.
Article in English | MEDLINE | ID: mdl-32435651

ABSTRACT

Ingestion of Western-diets enriched in long chain saturated fatty acids (LCSFA) are associated with increased risk of blood-brain barrier (BBB) dysfunction and neurovascular inflammation. Potential mechanisms include vascular insult as a consequence of metabolic aberrations, or changes in capillary permeability resulting in brain parenchymal extravasation of pro-inflammatory molecules. Bovine dairy milk (BDM) is potentially a significant source of dietary LCSFA, however, BDM contains an array of bioactive molecules purported to have vascular anti-inflammatory properties. This study investigated the effects of full cream (4% total fat) and delipidated (skim) BDM on BBB integrity and neuroinflammation in wild-type mice. Mice consuming substantial amounts of full cream or skim BDM with LCSFA-enriched chow were dyslipidemic compared to control mice provided with standard chow and water. However, there was no evidence of BBB dysfunction or neuroinflammation indicated by parenchymal abundance of immunoglobulin G and microglial recruitment, respectively. Positive control mice maintained on an LCSFA-enriched diet derived from cocoa-butter and water, had marked BBB dysfunction, however, co-provision of both full cream and skim milk solutions effectively attenuated LCSFA-induced BBB dysfunction. In mice provided with low-fat chow and full cream BDM drinking solutions, there were substantial favorable changes in the concentration of plasma anti-inflammatory cytokines. This study suggests that consumption of BDM may confer potent vascular benefits through the neuroprotective properties exuded by the milk-fat globule membrane moiety of BDM.

14.
Curr Diabetes Rev ; 16(8): 900-909, 2020.
Article in English | MEDLINE | ID: mdl-32013849

ABSTRACT

BACKGROUND: Recent studies have suggested that hyperglycaemia influences the bile acid profile and concentrations of secondary bile acids in the gut. INTRODUCTION: This study aimed to measure changes in the bile acid profile in the gut, tissues, and faeces in type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). METHODS: T1D and T2D were established in a mouse model. Twenty-one seven-weeks old balb/c mice were randomly divided into three equal groups, healthy, T1D and T2D. Blood, tissue, urine and faeces samples were collected for bile acid measurements. RESULTS: Compared with healthy mice, T1D and T2D mice showed lower levels of the primary bile acid, chenodeoxycholic acid, in the plasma, intestine, and brain, and higher levels of the secondary bile acid, lithocholic acid, in the plasma and pancreas. Levels of the bile acid ursodeoxycholic acid were undetected in healthy mice but were found to be elevated in T1D and T2D mice. CONCLUSION: Bile acid profiles in other organs were variably influenced by T1D and T2D development, which suggests similarity in effects of T1D and T2D on the bile acid profile, but these effects were not always consistent among all organs, possibly since feedback mechanisms controlling enterohepatic recirculation and bile acid profiles and biotransformation are different in T1D and T2D.


Subject(s)
Cholic Acids/analysis , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Animals , Bile Acids and Salts/analysis , Bile Acids and Salts/blood , Bile Acids and Salts/urine , Blood Glucose/analysis , Brain Chemistry , Cholic Acids/blood , Cholic Acids/urine , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/urine , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/urine , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/urine , Disease Models, Animal , Feces/chemistry , Gastrointestinal Tract/chemistry , Hyperglycemia/blood , Hyperglycemia/urine , Male , Mice , Mice, Inbred BALB C , Muscles/chemistry , Random Allocation
15.
Pharmacol Rep ; 72(2): 368-378, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32048259

ABSTRACT

BACKGROUND: Ursodeoxycholic acid (UDCA) is a secondary hydrophilic bile acid, metabolised in the gut, by microbiota. UDCA is currently prescribed for primary biliary cirrhosis, and of recently has shown ß-cell protective effects, which suggests potential antidiabetic effects. Thus, this study aimed to design targeted-delivery microcapsules for oral uptake of UDCA and test its effects in type 1 diabetes (T1D). METHODS: UDCA microcapsules were produced using alginate-NM30 matrix. Three equal groups of mice (6-7 mice per group) were gavaged daily UDCA powder, empty microcapsules and UDCA microcapsules for 7 days, then T1D was induced by alloxan injection and treatments continued until mice had to be euthanised due to weight loss > 10% or severe symptoms develop. Plasma, tissues, and faeces were collected and analysed for bile acids' concentrations. RESULTS: UDCA microcapsules brought about reduction in elevated blood glucose, reduced inflammation and altered concentrations of the primary bile acid chenodeoxycholic acid and the secondary bile acid lithocholic acid, without affecting survival rate of mice. CONCLUSION: The findings suggest that UDCA exerted direct protective effects on pancreatic ß-cells and this is likely to be associated with alterations of concentrations of primary and secondary bile acids in plasma and tissues. Three equal groups of mice were gavaged daily UDCA (ursodeoxycholic acid) powder, empty microcapsules and UDCA microcapsules for 7 days, then T1D was induced and treatments continued until mice had to be euthanised. UDCA microcapsules brought about reduction in elevated blood glucose, reduced inflammation and altered concentrations of the primary bile acid chenodeoxycholic acid and the secondary bile acid lithocholic acid, without affecting survival rate of mice. The findings suggest that UDCA exerted direct protective effects on pancreatic ß-cells and this is likely to be associated with alterations of concentrations of primary and secondary bile acids in plasma and tissues.


Subject(s)
Acrylates/pharmacology , Bile Acids and Salts/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Nanoconjugates/chemistry , Ursodeoxycholic Acid/pharmacology , Acrylates/chemistry , Acrylates/metabolism , Animals , Bile Acids and Salts/blood , Bile Acids and Salts/urine , Chenodeoxycholic Acid/blood , Chenodeoxycholic Acid/metabolism , Chenodeoxycholic Acid/urine , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/metabolism , Feces/chemistry , Insulin/blood , Lithocholic Acid/blood , Lithocholic Acid/metabolism , Lithocholic Acid/urine , Mice , Ursodeoxycholic Acid/chemistry , Ursodeoxycholic Acid/metabolism
16.
Sci Rep ; 10(1): 106, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31919411

ABSTRACT

The antilipidemic drug, probucol (PB), has demonstrated potential applications in Type 2 diabetes (T2D) through its protective effects on pancreatic ß-cells. PB has poor solubility and bioavailability, and despite attempts to improve its oral delivery, none has shown dramatic improvements in absorption or antidiabetic effects. Preliminary data has shown potential benefits from bile acid co-encapsulation with PB. One bile acid has shown best potential improvement of PB oral delivery (ursodeoxycholic acid, UDCA). This study aimed to examine PB and UDCA microcapsules (with UDCA microcapsules serving as control) in terms of the microcapsules' morphology, biological effects ex vivo, and their hypoglycemic and antilipidemic and anti-inflammatory effects in vivo. PBUDCA and UDCA microcapsules were examined in vitro (formulation studies), ex vivo and in vivo. PBUDCA microcapsules exerted positive effects on ß-cells viability at hyperglycemic state, and brought about hypoglycemic and anti-inflammatory effects on the prediabetic mice. In conclusion, PBUDCA co-encapsulation have showed beneficial therapeutic impact of dual antioxidant-bile acid effects in diabetes treatment.


Subject(s)
Bile Acids and Salts/pharmacology , Capsules/chemistry , Drug Delivery Systems , Insulin-Secreting Cells/drug effects , Nanoparticles/chemistry , Probucol/pharmacology , Administration, Oral , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Bile Acids and Salts/administration & dosage , Cells, Cultured , Drug Compounding , Gastrointestinal Agents/pharmacology , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/metabolism , Lipids/analysis , Male , Mice , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Probucol/administration & dosage
17.
Ther Deliv ; 10(9): 563-571, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31646943

ABSTRACT

Aim: Common features in insulin-resistance diabetes include inflammation and liver damage due to bile acid accumulation. Results & methodology: This study aimed to test in vivo pharmacological effects of combining two drugs, ursodeoxycholic acid that has bile acid regulatory effects, and probucol (PB) that has potent anti-oxidative stress effects, using a new poly(meth)acrylate nano-targeting formulation on prediabetic mice. Mice were made diabetic and were fed daily with either PB, nanoencapsulated PB or nanoencapsulated PB-ursodeoxycholic acid before blood, tissues, urine and feces were collected for inflammation and bile acid measurements. The nanoencapsulated PB-ursodeoxycholic acid formulation increased plasma IL-10, and increased the concentration of primary bile acids in the liver and heart. Conclusion: Results suggest potential applications in regulating IL-10 in insulin-resistance prediabetes.

18.
PLoS One ; 14(4): e0214984, 2019.
Article in English | MEDLINE | ID: mdl-30947243

ABSTRACT

Type 2 diabetes (T2D) is characterised by ß-cell damage and hyperglycaemia. The lipophilic drug, probucol, has shown significant ß-cell protective and potential antidiabetic effects, which were enhanced by hydrophilic bile acid incorporation using taurocholic acid and chenodeoxycholic acid. However, probucol has severe cardiotoxicity and a variable absorption profile, which limit its potential applications in T2D. Accordingly, this study aimed to design multiple formulations to optimise probucol oral delivery in T2D and test their effects on probucol absorption and accumulation in the heart. Adult male mice were given a high fat diet (HFD), and a week later, injected with a single dose of alloxan to accelerate T2D development, and once diabetes confirmed, divided into three groups (six to seven mice each). The groups were gavaged a daily dose of probucol powder, probucol microcapsules, or probucol-bile acid microcapsules for three months, and euthanized; and blood, tissues, and feces collected for blood glucose and probucol concentration analyses. Probucol concentrations in plasma were similar among all the groups. Groups given probucol microcapsules and probucol-bile acid microcapsules showed significant reduction in probucol accumulation in the heart compared with the group given probucol powder (p<0.05). Probucol microencapsulation with or without bile acids reduced its accumulation in heart tissues, without changing plasma concentrations, which may be beneficial in reducing its cardiotoxicity and optimise its potential applications in T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Probucol , Administration, Oral , Animals , Capsules , Cardiotoxicity/blood , Cardiotoxicity/prevention & control , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Dietary Fats/adverse effects , Dietary Fats/pharmacology , Male , Mice , Mice, Inbred BALB C , Myocardium/metabolism , Probucol/pharmacokinetics , Probucol/pharmacology
19.
Artif Cells Nanomed Biotechnol ; 46(sup3): S748-S754, 2018.
Article in English | MEDLINE | ID: mdl-30422681

ABSTRACT

INTRODUCTION: The ratio of secondary to primary bile acids changes during Type 1 Diabetes (T1D) development and these effects might be ameliorated by using cholesterol lowering drugs or hydrophilic bile acids. Probucol is a cholesterol-lowering drug, while ursodeoxycholic acid is a hydrophilic bile acid. This study investigated whether nanoencapsulated probucol with ursodeoxycholic acid altered bile acid ratios and the development of diabetes. METHODS: Balb/c mice were divided into three groups and gavaged daily with either free probucol, nanoencapsulated probucol or nanoencapsulated probucol with ursodeoxycholic acid for seven days. Alloxan was injected and once T1D was confirmed the mice continued to receive daily gavages until euthanasia. Blood, tissues, faeces and urine were collected for analysis of insulin and bile acids. RESULTS AND CONCLUSIONS: Nanoencapsulated probucol-ursodeoxycholic acid resulted in significant levels of insulin in the blood, lower levels of secondary bile acids in liver and lower levels of primary bile acids in brain, while ratio of secondary to primary bile acids remains similar among all groups, except in the faeces. Findings suggests that nanoencapsulated probucol-ursodeoxycholic acid may exert a protective effect on pancreatic ß-cells and reserve systemic insulin load via modulation of bile acid concentrations in the liver and brain.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Intestinal Mucosa , Nanocapsules , Probucol , Ursodeoxycholic Acid , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Humans , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred BALB C , Nanocapsules/chemistry , Nanocapsules/therapeutic use , Probucol/chemistry , Probucol/pharmacokinetics , Probucol/pharmacology , Ursodeoxycholic Acid/chemistry , Ursodeoxycholic Acid/pharmacokinetics , Ursodeoxycholic Acid/pharmacology
20.
Int J Mol Sci ; 19(11)2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30384417

ABSTRACT

Following mild traumatic brain injury (mTBI), the ionic homeostasis of the central nervous system (CNS) becomes imbalanced. Excess Ca2+ influx into cells triggers molecular cascades, which result in detrimental effects. The authors assessed the effects of a combination of ion channel inhibitors (ICI) following repeated mTBI (rmTBI). Adult female rats were subjected to two rmTBI weight-drop injuries 24 h apart, sham procedures (sham), or no procedures (normal). Lomerizine, which inhibits voltage-gated calcium channels, was administered orally twice daily, whereas YM872 and Brilliant Blue G, inhibiting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and P2X7 receptors, respectively, were delivered intraperitoneally every 48 h post-injury. Vehicle treatment controls were included for rmTBI, sham, and normal groups. At 11 days following rmTBI, there was a significant increase in the time taken to cross the 3 cm beam, as a sub-analysis of neurological severity score (NSS) assessments, compared with the normal control (p < 0.05), and a significant decrease in learning-associated improvement in rmTBI in Morris water maze (MWM) trials relative to the sham (p < 0.05). ICI-treated rmTBI animals were not different to sham, normal controls, or rmTBI treated with vehicle in all neurological severity score and Morris water maze assessments (p > 0.05). rmTBI resulted in increases in microglial cell density, antioxidant responses (manganese-dependent superoxide dismutase (MnSOD) immunoreactivity), and alterations to node of Ranvier structure. ICI treatment decreased microglial density, MnSOD immunoreactivity, and abnormalities of the node of Ranvier compared with vehicle controls (p < 0.01). The authors' findings demonstrate the beneficial effects of the combinatorial ICI treatment on day 11 post-rmTBI, suggesting an attractive therapeutic strategy against the damage induced by excess Ca2+ following rmTBI.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Calcium Channel Blockers/pharmacology , Maze Learning/drug effects , Animals , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , Drug Therapy, Combination/methods , Female , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...