Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Int J Angiol ; 32(4): 253-257, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37927842

ABSTRACT

In this case report, we describe the clinical course of a complicated transplant renal artery (TRA) pseudoaneurysm, clinically featured by gross and massive hematuria one month after a kidney transplant was performed on a 50 year-old male patient. TRA pseudoaneurysm is a rare but potentially life-threatening complication that may result in bleeding, infection, graft dysfunction/loss, lower limb ischemia/loss, hemorrhagic shock, and death. TRA pseudoaneurysm treatment remains challenging as it needs to be tailored to the patient characteristics including hemodynamic stability, graft function, anatomy, presentation, and pseudoaneurysm features. This publication discusses the clinical scenario of massive gross hematuria that derived from a retroperitoneal hematoma which originated from an actively bleeding TRA pseudoaneurysm. This case highlights the combined approach of endovascular stent placement and subsequent transplant nephrectomy as a last resort in the management of intractable bleeding from a complicated TRA pseudoaneurysm. To the best of our knowledge, this is the first published case report of an actively bleeding TRA anastomotic pseudoaneurysm that caused a massive retroperitoneal bleed that in turn evacuated via the bladder after disrupting the ureter-to-bladder anastomosis. A temporizing hemostatic arterial stent placed percutaneously allowed for a safer and controlled emergency transplant nephrectomy.

2.
Int J Angiol ; 32(4): 262-268, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37927847

ABSTRACT

This case study describes a 45-year-old Caucasian male with a past medical history of obesity, hypertension, and non-insulin-dependent diabetes mellitus, who in the setting of coronavirus disease 2019 (COVID-19) pneumonia, developed portal vein thrombosis (PVT) presenting as an acute abdomen after hospital discharge from a cholecystitis episode. PVT is a very infrequent thromboembolic condition, classically occurring in patients with systemic conditions such as cirrhosis, malignancy, pancreatitis, diverticulitis, autoimmunity, and thrombophilia. PVT can cause serious complications, such as intestinal infarction, or even death, if not promptly treated. Due to the limited number of reports in the literature describing PVT in the COVID-19 setting, its prevalence, natural history, mechanism, and precise clinical features remain unknown. Therefore, clinical suspicion should be high for PVT, in any COVID-19 patient who presents with abdominal pain or associated signs and symptoms. To the best of our knowledge, this is the first report of COVID-19-associated PVT causing extensive thrombosis in the portal vein and its right branch, occurring in the setting of early-stage cirrhosis after a preceding episode of cholecystitis.

3.
Purinergic Signal ; 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37507639

ABSTRACT

Purine nucleotide adenosine triphosphate (ATP) is a source of intracellular energy maintained by mitochondrial oxidative phosphorylation. However, when released from ischemic cells into the extracellular space, they act as death-signaling molecules (eATP). Despite there being potential benefit in using pyruvate to enhance mitochondria by inducing a highly oxidative metabolic state, its association with eATP levels is still poorly understood. Therefore, while we hypothesized that pyruvate could beneficially increase intracellular ATP with the enhancement of mitochondrial function after cardiac arrest (CA), our main focus was whether a proportion of the raised intracellular ATP would detrimentally leak out into the extracellular space. As indicated by the increased levels in systemic oxygen consumption, intravenous administrations of bolus (500 mg/kg) and continuous infusion (1000 mg/kg/h) of pyruvate successfully increased oxygen metabolism in post 10-min CA rats. Plasma ATP levels increased significantly from 67 ± 11 nM before CA to 227 ± 103 nM 2 h after the resuscitation; however, pyruvate administration did not affect post-CA ATP levels. Notably, pyruvate improved post-CA cardiac contraction and acidemia (low pH). We also found that pyruvate increased systemic CO2 production post-CA. These data support that pyruvate has therapeutic potential for improving CA outcomes by enhancing oxygen and energy metabolism in the brain and heart and attenuating intracellular hydrogen ion disorders, but does not exacerbate the death-signaling of eATP in the blood.

4.
J Cereb Blood Flow Metab ; 43(11): 1942-1950, 2023 11.
Article in English | MEDLINE | ID: mdl-37377095

ABSTRACT

This prospective observational single-center cohort study aimed to determine an association between cerebrovascular autoregulation (CVAR) and outcomes in hypoxic-ischemic brain injury post-cardiac arrest (CA), and assessed 100 consecutive post-CA patients in Japan between June 2017 and May 2020 who experienced a return of spontaneous circulation. Continuous monitoring was performed for 96 h to determine CVAR presence. A moving Pearson correlation coefficient was calculated from the mean arterial pressure and cerebral regional oxygen saturation. The association between CVAR and outcomes was evaluated using the Cox proportional hazard model; non-CVAR time percent was the time-dependent, age-adjusted covariate. The non-linear effect of target temperature management (TTM) was assessed using a restricted cubic spline. Of the 100 participants, CVAR was detected using the cerebral performance category (CPC) in all patients with a good neurological outcome (CPC 1-2) and in 65 patients (88%) with a poor outcome (CPC 3-5). Survival probability decreased significantly with increasing non-CVAR time percent. The TTM versus the non-TTM group had a significantly lower probability of a poor neurological outcome at 6 months with a non-CVAR time of 18%-37% (p < 0.05). Longer non-CVAR time may be associated with significantly increased mortality in hypoxic-ischemic brain injury post-CA.


Subject(s)
Brain Injuries , Heart Arrest , Hypoxia-Ischemia, Brain , Humans , Cohort Studies , Prospective Studies , Heart Arrest/complications , Hypoxia-Ischemia, Brain/complications , Homeostasis/physiology , Cerebrovascular Circulation/physiology , Brain Injuries/complications
5.
Cells ; 12(11)2023 06 05.
Article in English | MEDLINE | ID: mdl-37296668

ABSTRACT

BACKGROUND: Cardiac arrest (CA) can lead to neuronal degeneration and death through various pathways, including oxidative, inflammatory, and metabolic stress. However, current neuroprotective drug therapies will typically target only one of these pathways, and most single drug attempts to correct the multiple dysregulated metabolic pathways elicited following cardiac arrest have failed to demonstrate clear benefit. Many scientists have opined on the need for novel, multidimensional approaches to the multiple metabolic disturbances after cardiac arrest. In the current study, we have developed a therapeutic cocktail that includes ten drugs capable of targeting multiple pathways of ischemia-reperfusion injury after CA. We then evaluated its effectiveness in improving neurologically favorable survival through a randomized, blind, and placebo-controlled study in rats subjected to 12 min of asphyxial CA, a severe injury model. RESULTS: 14 rats were given the cocktail and 14 received the vehicle after resuscitation. At 72 h post-resuscitation, the survival rate was 78.6% among cocktail-treated rats, which was significantly higher than the 28.6% survival rate among vehicle-treated rats (log-rank test; p = 0.006). Moreover, in cocktail-treated rats, neurological deficit scores were also improved. These survival and neurological function data suggest that our multi-drug cocktail may be a potential post-CA therapy that deserves clinical translation. CONCLUSIONS: Our findings demonstrate that, with its ability to target multiple damaging pathways, a multi-drug therapeutic cocktail offers promise both as a conceptual advance and as a specific multi-drug formulation capable of combatting neuronal degeneration and death following cardiac arrest. Clinical implementation of this therapy may improve neurologically favorable survival rates and neurological deficits in patients suffering from cardiac arrest.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Animals , Rats , Cardiopulmonary Resuscitation/methods , Heart Arrest/complications , Heart Arrest/therapy , Rats, Sprague-Dawley , Rodentia
6.
FASEB J ; 37(7): e23001, 2023 07.
Article in English | MEDLINE | ID: mdl-37249913

ABSTRACT

Cardiac arrest (CA) and concomitant post-CA syndrome lead to a lethal condition characterized by systemic ischemia-reperfusion injury. Oxygen (O2 ) supply during cardiopulmonary resuscitation (CPR) is the key to success in resuscitation, but sustained hyperoxia can produce toxic effects post CA. However, only few studies have investigated the optimal duration and dosage of O2 administration. Herein, we aimed to determine whether high concentrations of O2 at resuscitation are beneficial or harmful. After rats were resuscitated from the 10-min asphyxia, mechanical ventilation was restarted at an FIO2 of 1.0 or 0.3. From 10 min after initiating CPR, FIO2 of both groups were maintained at 0.3. Bio-physiological parameters including O2 consumption (VO2 ) and mRNA gene expression in multiple organs were evaluated. The FIO2 0.3 group decreased VO2 , delayed the time required to achieve peak MAP, lowered ejection fraction (75.1 ± 3.3% and 59.0 ± 5.7% with FIO2 1.0 and 0.3, respectively; p < .05), and increased blood lactate levels (4.9 ± 0.2 mmol/L and 5.6 ± 0.2 mmol/L, respectively; p < .05) at 10 min after CPR. FIO2 0.3 group had significant increases in hypoxia-inducible factor, inflammatory, and apoptosis-related mRNA gene expression in the brain. Likewise, significant upregulations of hypoxia-inducible factor and apoptosis-related gene expression were observed in the FIO2 0.3 group in the heart and lungs. Insufficient O2 supplementation in the first 10 min of resuscitation could prolong ischemia, and may result in unfavorable biological responses 2 h after CA. Faster recovery from the impairment of O2 metabolism might contribute to the improvement of hemodynamics during the early post-resuscitation phase; therefore, it may be reasonable to provide the maximum feasible O2 concentrations during CPR.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Rats , Animals , Oxygen , Heart Arrest/therapy , Hemodynamics , Hypoxia , Disease Models, Animal
7.
Int J Angiol ; 32(2): 128-130, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37207015

ABSTRACT

Organ transplantation can be associated with vascular torsions and angulations of both recipient and donor vessels. Such kinks and/or torsions of vessels can compromise the vascular integrity, obstruct inflow and/or outflow, and result in loss of the organ and/or body parts. On many occasions, mild angulations and torsions can be successfully addressed by repositioning the organ. In cases where the abnormal findings persist, maneuvers such as placing a fat pad to create a smoother curve, or even opening the peritoneum (in the case of kidney transplants) to allow for a better positioning of the organ, are associated with successful outcomes. When such torsions/angulations persist despite these approaches, further innovative tactics are required. In the current report, we propose a technique that involves longitudinally opening of a synthetic graft that is rigid enough to maintain its shape, such as a ringed polytetrafluoroethylene graft, and placing it as an external stent around the angulated/torsioned vessel. This maneuver will correct the underlying vascular compromise without having to perform any further invasive interventions, such as reimplanting the organ or resecting part of the involved vessel. Although primarily illustrated for application by describing an instance in which exostenting was applied during kidney transplantation, our approach could be applied to any vessel under many circumstances where angulations/twists are encountered. In this report, we describe the use of an external stent, also called exostenting, to correct a severe torsion/angulation of the external iliac artery in a kidney transplant recipient where all other measures were unsuccessful.

8.
BMC Med ; 21(1): 56, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36922820

ABSTRACT

BACKGROUND: Mitochondrial transplantation (MTx) is an emerging but poorly understood technology with the potential to mitigate severe ischemia-reperfusion injuries after cardiac arrest (CA). To address critical gaps in the current knowledge, we test the hypothesis that MTx can improve outcomes after CA resuscitation. METHODS: This study consists of both in vitro and in vivo studies. We initially examined the migration of exogenous mitochondria into primary neural cell culture in vitro. Exogenous mitochondria extracted from the brain and muscle tissues of donor rats and endogenous mitochondria in the neural cells were separately labeled before co-culture. After a period of 24 h following co-culture, mitochondrial transfer was observed using microscopy. In vitro adenosine triphosphate (ATP) contents were assessed between freshly isolated and frozen-thawed mitochondria to compare their effects on survival. Our main study was an in vivo rat model of CA in which rats were subjected to 10 min of asphyxial CA followed by resuscitation. At the time of achieving successful resuscitation, rats were randomly assigned into one of three groups of intravenous injections: vehicle, frozen-thawed, or fresh viable mitochondria. During 72 h post-CA, the therapeutic efficacy of MTx was assessed by comparison of survival rates. The persistence of labeled donor mitochondria within critical organs of recipient animals 24 h post-CA was visualized via microscopy. RESULTS: The donated mitochondria were successfully taken up into cultured neural cells. Transferred exogenous mitochondria co-localized with endogenous mitochondria inside neural cells. ATP content in fresh mitochondria was approximately four times higher than in frozen-thawed mitochondria. In the in vivo survival study, freshly isolated functional mitochondria, but not frozen-thawed mitochondria, significantly increased 72-h survival from 55 to 91% (P = 0.048 vs. vehicle). The beneficial effects on survival were associated with improvements in rapid recovery of arterial lactate and glucose levels, cerebral microcirculation, lung edema, and neurological function. Labeled mitochondria were observed inside the vital organs of the surviving rats 24 h post-CA. CONCLUSIONS: MTx performed immediately after resuscitation improved survival and neurological recovery in post-CA rats. These results provide a foundation for future studies to promote the development of MTx as a novel therapeutic strategy to save lives currently lost after CA.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Rats , Animals , Cardiopulmonary Resuscitation/methods , Heart Arrest/therapy , Mitochondria , Brain/metabolism , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Adenosine Triphosphate/therapeutic use , Disease Models, Animal
9.
Sci Rep ; 13(1): 3419, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854715

ABSTRACT

Cardiac arrest (CA) patients suffer from systemic ischemia-reperfusion (IR) injury leading to multiple organ failure; however, few studies have focused on tissue-specific pathophysiological responses to IR-induced oxidative stress. Herein, we investigated biological and physiological parameters of the brain and heart, and we particularly focused on the lung dysfunction that has not been well studied to date. We aimed to understand tissue-specific susceptibility to oxidative stress and tested how oxygen concentrations in the post-resuscitation setting would affect outcomes. Rats were resuscitated from 10 min of asphyxia CA. Mechanical ventilation was initiated at the beginning of cardiopulmonary resuscitation. We examined animals with or without CA, and those were further divided into the animals exposed to 100% oxygen (CA_Hypero) or those with 30% oxygen (CA_Normo) for 2 h after resuscitation. Biological and physiological parameters of the brain, heart, and lungs were assessed. The brain and lung functions were decreased after CA and resuscitation indicated by worse modified neurological score as compared to baseline (222 ± 33 vs. 500 ± 0, P < 0.05), and decreased PaO2 (20 min after resuscitation: 113 ± 9 vs. baseline: 128 ± 9 mmHg, P < 0.05) and increased airway pressure (2 h: 10.3 ± 0.3 vs. baseline: 8.1 ± 0.2 mmHg, P < 0.001), whereas the heart function measured by echocardiography did not show significant differences compared before and after CA (ejection fraction, 24 h: 77.9 ± 3.3% vs. baseline: 82.2 ± 1.9%, P = 0.2886; fractional shortening, 24 h: 42.9 ± 3.1% vs. baseline: 45.7 ± 1.9%, P = 0.4658). Likewise, increases of superoxide production in the brain and lungs were remarkable, while those in the heart were moderate. mRNA gene expression analysis revealed that CA_Hypero group had increases in Il1b as compared to CA_Normo group significantly in the brain (P < 0.01) and lungs (P < 0.001) but not the heart (P = 0.4848). Similarly, hyperoxia-induced increases in other inflammatory and apoptotic mRNA gene expression were observed in the brain, whereas no differences were found in the heart. Upon systemic IR injury initiated by asphyxia CA, hyperoxia-induced injury exacerbated inflammation/apoptosis signals in the brain and lungs but might not affect the heart. Hyperoxia following asphyxia CA is more damaging to the brain and lungs but not the heart.


Subject(s)
Heart Arrest , Hyperoxia , Reperfusion Injury , Animals , Rats , Asphyxia , Brain/pathology , Cardiopulmonary Resuscitation , Heart Arrest/complications , Hyperoxia/complications , Ischemia , Lung , Oxygen , Reperfusion , Reperfusion Injury/complications , Reperfusion Injury/pathology , Disease Models, Animal
10.
Sci Rep ; 13(1): 1189, 2023 01 21.
Article in English | MEDLINE | ID: mdl-36681704

ABSTRACT

We previously developed a risk assessment tool to predict outcomes after heat-related illness (J-ERATO score), which consists of six binary prehospital vital signs. We aimed to evaluate the ability of the score to predict clinical outcomes for hospitalized patients with heat-related illnesses. In a nationwide, prospective, observational study, adult patients hospitalized for heat-related illnesses were registered. A binary logistic regression model and receiver operating characteristic (ROC) curve analysis were used to assess the relationship between the J-ERATO and survival at hospital discharge as a primary outcome. Among eligible patients, 1244 (93.0%) survived to hospital discharge. Multivariable logistic regression analysis revealed that the J-ERATO was an independent predictor for survival to discharge (adjusted odds ratio [OR] 0.47; 95% confidence interval [CI] 0.37-0.59) and occurrence of disseminated intravascular coagulation (DIC) on day 1 (adjusted OR 2.07; 95% CI 1.73-2.49). ROC analyses revealed an optimal J-ERATO cut-off of 5 for prediction of mortality at discharge (area under the curve [AUC] 0.742; 95% CI 0.691-0.787) and DIC development on day 1 (AUC 0.723; 95% CI 0.684-0.758). The J-ERATO obtained before transportation could be helpful in predicting the severity and mortality of hospitalized patients with heat-related illnesses.


Subject(s)
Emergency Medical Services , Heat Stress Disorders , Adult , Humans , Prospective Studies , Hot Temperature , East Asian People , ROC Curve , Risk Assessment , Retrospective Studies , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL