Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
J Biol Chem ; 300(9): 107630, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098526

ABSTRACT

CD22 (also known as Siglec-2) is an inhibitory receptor expressed in B cells. CD22 specifically recognizes α2,6 sialic acid and interacts with α2,6 sialylated membrane proteins expressed on the same cell (cis-ligands) and those derived from outside of the cell (trans-ligands). Previously, CD22 cis-ligands were shown to regulate the activity of CD22, thereby regulating both BCR ligation-induced signaling and low-level "tonic" signaling in the absence of BCR ligation that regulates the survival and differentiation of B cells. Mouse CD22 prefers Neu5Gc to Neu5Ac thereby binding to α2,6-linked Neu5Gc with high affinity. Although human CD22 binds to a distinct α2,6 sialylated glycan with high affinity, expression of high-affinity ligands is regulated in a conserved and stringent manner. However, how high- versus low-affinity CD22 ligands regulate B cells is poorly understood. Here we demonstrate that the interaction of CD22 with the endogenous ligands enhances BCR ligation-induced signaling but reduces tonic signaling in Cmah-/- mouse B cells deficient in Neu5Gc as well as wild-type B cells. Moreover, Cmah-/- B cells do not show alterations in the phenotypes correlated to tonic signaling. These results indicate that low-affinity interaction of the CD22 cis-ligands with CD22 is sufficient for the regulation of B cell signaling, and suggest that expression of high-affinity CD22 ligands might be involved in the regulation of B cells by competing for the binding of CD22 with exogenous trans-ligands of CD22.

2.
Glycoconj J ; 40(2): 225-246, 2023 04.
Article in English | MEDLINE | ID: mdl-36708410

ABSTRACT

CD22, one of the sialic acid-binding immunoglobulin-like lectins (Siglecs), regulates B lymphocyte signaling via its interaction with glycan ligands bearing the sequence Neu5Ac/Gcα(2→6)Gal. We have developed the synthetic sialoside GSC-718 as a ligand mimic for CD22 and identified it as a potent CD22 inhibitor. Although the synthesis of CD22-binding sialosides including GSC-718 has been reported by our group, the synthetic route was unfortunately not suitable for large-scale synthesis. In this study, we developed an improved scalable synthetic procedure for sialosides which utilized 1,5-lactam formation as a key step. The improved procedure yielded sialosides incorporating a series of aglycones at the C2 position. Several derivatives with substituted benzyl residues as aglycones were found to bind to mouse CD22 with affinity comparable to that of GSC-718. The new procedure developed in this study affords sialosides in sufficient quantities for cell-based assays, and will facilitate the search for promising CD22 inhibitors that have therapeutic potential.


Subject(s)
B-Lymphocytes , Signal Transduction , Animals , Mice , Sialic Acid Binding Ig-like Lectin 2/metabolism , B-Lymphocytes/metabolism , Ligands
3.
FASEB J ; 37(1): e22680, 2023 01.
Article in English | MEDLINE | ID: mdl-36468710

ABSTRACT

Spermatid production is a complex regulatory process in which coordination between hormonal control and apoptosis plays a pivotal role in maintaining a balanced number of sperm cells. Apoptosis in spermatogenesis is controlled by pro-apoptotic and anti-apoptotic molecules. Hormones involved in the apoptotic process during spermatogenesis include gonadotrophins, sex hormones, and glucocorticoid (GC). GC acts broadly as an apoptosis inducer by binding to its receptor (glucocorticoid receptor: GR) during organ development processes, such as spermatogenesis. However, the downstream pathway induced in GC-GR signaling and the apoptotic process during spermatogenesis remains poorly understood. We reported previously that GC induces full-length glucocorticoid-induced transcript 1 (GLCCI1-long), which functions as an anti-apoptotic mediator in thymic T cell development. Here, we demonstrate that mature murine testis expresses a novel isoform of GLCCI1 protein (GLCCI1-short) in addition to GLCCI1-long. We demonstrate that GLCCI1-long is expressed in spermatocytes along with GR. In contrast, GLCCI1-short is primarily expressed in spermatids where GR is absent; instead, the estrogen receptor is expressed. GLCCI1-short also binds to LC8, which is a known mediator of the anti-apoptotic effect of GLCCI1-long. A luciferase reporter assay revealed that ß-estradiol treatment synergistically increased Glcci1-short promotor-driven luciferase activity in Erα-overexpressing cells. Together with the evidence that the conversion of testosterone to estrogen is preceded by aromatase expression in spermatids, we hypothesize that estrogen induces GLCCI1-short, which, in turn, may function as a novel anti-apoptotic mediator in mature murine testis.


Subject(s)
Glucocorticoids , Semen , Male , Mice , Animals , Spermatogenesis , Spermatids , Estrogens
4.
J Am Soc Nephrol ; 33(11): 2008-2025, 2022 11.
Article in English | MEDLINE | ID: mdl-35985815

ABSTRACT

BACKGROUND: The cause of podocyte injury in idiopathic nephrotic syndrome (INS) remains unknown. Although recent evidence points to the role of B cells and autoimmunity, the lack of animal models mediated by autoimmunity limits further research. We aimed to establish a mouse model mimicking human INS by immunizing mice with Crb2, a transmembrane protein expressed at the podocyte foot process. METHODS: C3H/HeN mice were immunized with the recombinant extracellular domain of mouse Crb2. Serum anti-Crb2 antibody, urine protein-to-creatinine ratio, and kidney histology were studied. For signaling studies, a Crb2-expressing mouse podocyte line was incubated with anti-Crb2 antibody. RESULTS: Serum anti-Crb2 autoantibodies and significant proteinuria were detected 4 weeks after the first immunization. The proteinuria reached nephrotic range at 9-13 weeks and persisted up to 29 weeks. Initial kidney histology resembled minimal change disease in humans, and immunofluorescence staining showed delicate punctate IgG staining in the glomerulus, which colocalized with Crb2 at the podocyte foot process. A subset of mice developed features resembling FSGS after 18 weeks. In glomeruli of immunized mice and in Crb2-expressing podocytes incubated with anti-Crb2 antibody, phosphorylation of ezrin, which connects Crb2 to the cytoskeleton, increased, accompanied by altered Crb2 localization and actin distribution. CONCLUSION: The results highlight the causative role of anti-Crb2 autoantibody in podocyte injury in mice. Crb2 immunization could be a useful model to study the immunologic pathogenesis of human INS, and may support the role of autoimmunity against podocyte proteins in INS.


Subject(s)
Nephrosis, Lipoid , Nephrotic Syndrome , Podocytes , Mice , Humans , Animals , Podocytes/metabolism , Nephrotic Syndrome/metabolism , Nephrosis, Lipoid/pathology , Mice, Inbred C3H , Proteinuria/metabolism , Disease Models, Animal , Immunization , Carrier Proteins/metabolism , Membrane Proteins/metabolism
5.
Biochem Biophys Res Commun ; 614: 198-206, 2022 07 23.
Article in English | MEDLINE | ID: mdl-35605301

ABSTRACT

Podocyte damage is a major pathological lesion leading to focal segmental glomerulosclerosis (FSGS). Podocytes damaged by cellular stress undergo hypertrophy to compensate for podocytopenia. It is known that cyclin-dependent kinase inhibitors induced by p53 ensure podocytes hypertrophy; however, its precise mechanism remains to be further investigated. In this study, we found that ubiquitin specific protease 40 (USP40) is a novel regulator of p53. Although USP40 knockout mice established in the present study revealed no abnormal kidney phenotype, intermediate filament Nestin was upregulated in the glomeruli, and was bound to and colocalized with USP40. We also found that USP40 deubiquitinated histidine triad nucleotide-binding protein 1 (HINT1), an inducer of p53. Gene knockdown experiments of USP40 in cultured podocytes revealed the reduction of HINT1 and p53 protein expression. Finally, in glomerular podocytes of mouse FSGS, upregulation of HINT1 occurred in advance of the proteinuria, which was followed by upregulation of USP40, p53 and Nestin. In conclusion, USP40 bound to Nestin deubiquitinates HINT1, and in consequence upregulates p53. These results provide additional insight into the pathological mechanism of podocyte hypertrophy in FSGS.


Subject(s)
Glomerulosclerosis, Focal Segmental , Nerve Tissue Proteins , Nestin , Podocytes , Tumor Suppressor Protein p53 , Ubiquitin-Specific Proteases , Animals , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Hypertrophy , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nestin/genetics , Nestin/metabolism , Podocytes/metabolism , Podocytes/pathology , Podocytes/physiology , Protein Kinase C/antagonists & inhibitors , Stress, Physiological/genetics , Stress, Physiological/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Ubiquitination , Up-Regulation
6.
Cell Rep ; 38(11): 110512, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35294874

ABSTRACT

Germinal centers (GCs) are essential for antibody affinity maturation. GC B cells have a unique repertoire of cell surface glycans compared with naive B cells, yet functional roles for changes in glycosylation in the GC have yet to be ascribed. Detection of GCs by the antibody GL7 reflects a downregulation in ligands for CD22, an inhibitory co-receptor of the B cell receptor. To test a functional role for downregulation of CD22 ligands in the GC, we generate a mouse model that maintains CD22 ligands on GC B cells. With this model, we demonstrate that glycan remodeling plays a critical role in the maintenance of B cells in the GC. Sustained expression of CD22 ligands induces higher levels of apoptosis in GC B cells, reduces memory B cell and plasma cell output, and delays affinity maturation of antibodies. These defects are CD22 dependent, demonstrating that downregulation of CD22 ligands on B cells plays a critical function in the GC.


Subject(s)
Germinal Center , Receptors, Antigen, B-Cell , Animals , B-Lymphocytes , Glycosylation , Ligands , Mice , Polysaccharides/metabolism , Receptors, Antigen, B-Cell/metabolism
7.
Sci Signal ; 15(723): eabf9570, 2022 03.
Article in English | MEDLINE | ID: mdl-35230871

ABSTRACT

The protein tyrosine phosphatase CD45 plays a crucial role in B cell antigen receptor (BCR) signaling by activating Src family kinases. Cd45-/- mice show altered B cell development and a phenotype likely due to reduced steady-state signaling; however, Cd45-/- B cells show relatively normal BCR ligation-induced signaling. In our investigation of how BCR signaling was restored in Cd45-/- cells, we found that the coreceptor CD22 switched from an inhibitory to a stimulatory function in these cells. We disrupted the ability of CD22 to interact with its ligands in Cd45-/- B cells by generating Cd45-/-St6galI-/- mice, which cannot synthesize the glycan ligand of CD22, or by treating Cd45-/- B cells in vitro with the sialoside GSC718, which inhibits ligand binding to CD22. BCR ligation-induced signaling was reduced by ST6GalI deficiency, but not by GSC718 treatment, suggesting that CD22 restored BCR ligation-induced signaling in Cd45-/- mature B cells by altering cellular phenotypes during development. CD22 was required for the increase in the surface amount of IgM-BCR on Cd45-/- B cells, which augmented signaling. Because B cell survival depends on steady-state BCR signaling, IgM-BCR abundance was likely increased by the selective survival of IgM-BCRhi Cd45-/- B cells because of CD22-mediated signaling under conditions of substantially reduced steady-state signaling. Because the amount of surface IgM-BCR is increased on B cells from patients with other BCR signaling deficiencies, including X-linked agammaglobulinemia, our findings suggest that CD22 may contribute to the partial restoration of B cell function in these patients.


Subject(s)
B-Lymphocytes , Receptors, Antigen, B-Cell , Animals , B-Lymphocytes/metabolism , Leukocyte Common Antigens , Lymphocyte Activation , Mice , Receptors, Antigen, B-Cell/metabolism , Sialic Acid Binding Ig-like Lectin 2/genetics , Sialic Acid Binding Ig-like Lectin 2/metabolism , Signal Transduction , src-Family Kinases/metabolism
8.
Viruses ; 13(5)2021 05 01.
Article in English | MEDLINE | ID: mdl-34062844

ABSTRACT

The first step in influenza virus infection is the binding of hemagglutinin to sialic acid-containing glycans present on the cell surface. Over 50 different sialic acid modifications are known, of which N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the two main species. Animal models with α2,6 linked Neu5Ac in the upper respiratory tract, similar to humans, are preferred to enable and mimic infection with unadapted human influenza A viruses. Animal models that are currently most often used to study human influenza are mice and ferrets. Additionally, guinea pigs, cotton rats, Syrian hamsters, tree shrews, domestic swine, and non-human primates (macaques and marmosets) are discussed. The presence of NeuGc and the distribution of sialic acid linkages in the most commonly used models is summarized and experimentally determined. We also evaluated the role of Neu5Gc in infection using Neu5Gc binding viruses and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH)-/- knockout mice, which lack Neu5Gc and concluded that Neu5Gc is unlikely to be a decoy receptor. This article provides a base for choosing an appropriate animal model. Although mice are one of the most favored models, they are hardly naturally susceptible to infection with human influenza viruses, possibly because they express mainly α2,3 linked sialic acids with both Neu5Ac and Neu5Gc modifications. We suggest using ferrets, which resemble humans closely in the sialic acid content, both in the linkages and the lack of Neu5Gc, lung organization, susceptibility, and disease pathogenesis.


Subject(s)
Influenza A virus/physiology , Influenza, Human/metabolism , Influenza, Human/virology , Neuraminic Acids/metabolism , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Animals , Cell Line , Disease Models, Animal , Ferrets , Host-Pathogen Interactions , Humans , Mice , Molecular Structure , Neuraminic Acids/chemistry , Receptors, Virus/metabolism , Sialic Acids/metabolism , Symptom Assessment , Virus Attachment
9.
J Immunol ; 206(11): 2544-2551, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33990399

ABSTRACT

CD22 is an inhibitory B cell coreceptor that regulates B cell development and activation by downregulating BCR signaling through activation of SH2-containing protein tyrosine phosphatase-1 (SHP-1). CD22 recognizes α2,6 sialic acid as a specific ligand and interacts with α2,6 sialic acid-containing membrane molecules, such as CD45, IgM, and CD22, expressed on the same cell. Functional regulation of CD22 by these endogenous ligands enhances BCR ligation-induced signaling and is essential for normal B cell responses to Ags. In this study, we demonstrate that CD45 plays a crucial role in CD22-mediated inhibition of BCR ligation-induced signaling. However, disruption of ligand binding of CD22 enhances CD22 phosphorylation, a process required for CD22-mediated signal inhibition, upon BCR ligation in CD45-/- as well as wild-type mouse B cells but not in mouse B cells expressing a loss-of-function mutant of SHP-1. This result indicates that SHP-1 but not CD45 is required for ligand-mediated regulation of CD22. We further demonstrate that CD22 is a substrate of SHP-1, suggesting that SHP-1 recruited to CD22 dephosphorylates nearby CD22 as well as other substrates. CD22 dephosphorylation by SHP-1 appears to be augmented by homotypic CD22 clustering mediated by recognition of CD22 as a ligand of CD22 because CD22 clustering increases the number of nearby CD22. Our results suggest that CD22 but not CD45 is an endogenous ligand of CD22 that enhances BCR ligation-induced signaling through SHP-1-mediated dephosphorylation of CD22 in CD22 clusters.


Subject(s)
B-Lymphocytes/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 6/immunology , Receptors, Antigen, B-Cell/immunology , Sialic Acid Binding Ig-like Lectin 2/immunology , Animals , Cell Line , Humans , Leukocyte Common Antigens/immunology , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout
10.
F1000Res ; 10: 542, 2021.
Article in English | MEDLINE | ID: mdl-35528957

ABSTRACT

Background: Andrographolide (Andro) is a diterpenoid component of the plant Andrographis paniculata that is known for its anti-tumor activity against a variety of cancer cells.   Methods: We studied the effects of Andro on the viability of the human leukemia monocytic cell line THP-1 and the human multiple myeloma cell line H929. Andro was compared with cytosine arabinoside (Ara-C) and vincristine (VCR), which are well-established therapeutics against hematopoietic tumors. The importance of reactive oxygen species (ROS) production for the toxicity of each agent was investigated by using an inhibitor of ROS production, N-acetyl-L-cysteine (NAC).    Results:  Andro reduced the viability of THP-1 and H929 in a concentration-dependent manner. H929 viability was highly susceptible to Andro, although only slightly susceptible to Ara-C. The agents Andro, Ara-C, and VCR each induced apoptosis, as shown by cellular shrinkage, DNA fragmentation, and increases in annexin V-binding, caspase-3/7 activity, ROS production, and mitochondrial membrane depolarization. Whereas Ara-C and VCR increased the percentages of cells in the G0/G1 and G2/M phases, respectively, Andro showed little or no detectable effect on cell cycle progression. The apoptotic activities of Andro were largely suppressed by NAC, an inhibitor of ROS production, whereas NAC hardly affected the apoptotic activities of Ara-C and VCR.  Conclusions: Andro induces ROS-dependent apoptosis in monocytic leukemia THP-1 and multiple myeloma H929 cells, underlining its potential as a therapeutic agent for treating hematopoietic tumors. The high toxicity for H929 cells, by a mechanism that is different from that of Ara-C and VCR, is encouraging for further studies on the use of Andro against multiple myeloma.


Subject(s)
Diterpenes , Hematologic Neoplasms , Leukemia , Multiple Myeloma , Andrographis paniculata , Apoptosis , Cell Line, Tumor , Cytarabine/pharmacology , Diterpenes/pharmacology , Humans , Multiple Myeloma/drug therapy , Reactive Oxygen Species/metabolism
11.
J Autoimmun ; 116: 102571, 2021 01.
Article in English | MEDLINE | ID: mdl-33223341

ABSTRACT

Guillain-Barré syndrome (GBS), including its variant Miller Fisher syndrome (MFS), is an acute peripheral neuropathy that involves autoimmune mechanisms leading to the production of autoantibodies to gangliosides; sialic acid-containing glycosphingolipids. Although association with various genetic polymorphisms in the major histocompatibility complex (MHC) is shown in other autoimmune diseases, GBS is an exception, showing no such link. No significant association was found by genome wide association studies, suggesting that GBS is not associated with common variants. To address the involvement of rare variants in GBS, we analyzed Siglec-10, a sialic acid-recognizing inhibitory receptor expressed on B cells. Here we demonstrate that two rare variants encoding R47Q and A108V substitutions in the ligand-binding domain are significantly accumulated in patients with GBS. Because of strong linkage disequilibrium, there was no patient carrying only one of them. Recombinant Siglec-10 protein containing R47Q but not A108V shows impaired binding to gangliosides. Homology modeling revealed that the R47Q substitution causes marked alteration in the ligand-binding site. Thus, GBS is associated with a rare variant of the SIGLEC10 gene that impairs ligand binding of Siglec-10. Because Siglec-10 regulates antibody production to sialylated antigens, our finding suggests that Siglec-10 regulates development of GBS by suppressing antibody production to gangliosides, with defects in its function predisposing to disease.


Subject(s)
Gangliosides/immunology , Genetic Predisposition to Disease , Guillain-Barre Syndrome/immunology , Lectins/immunology , Mutation, Missense/immunology , Polymorphism, Single Nucleotide/immunology , Receptors, Cell Surface/immunology , Alleles , Amino Acid Sequence , Autoantibodies/immunology , Binding Sites/genetics , Female , Gangliosides/metabolism , Gene Frequency , Genotype , Guillain-Barre Syndrome/genetics , Guillain-Barre Syndrome/metabolism , Humans , Lectins/genetics , Lectins/metabolism , Male , Middle Aged , Miller Fisher Syndrome/genetics , Miller Fisher Syndrome/immunology , Miller Fisher Syndrome/metabolism , Mutation, Missense/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Sequence Homology, Amino Acid
12.
Int J Mol Sci ; 21(14)2020 Jul 19.
Article in English | MEDLINE | ID: mdl-32707739

ABSTRACT

The AMPA-type glutamate receptor (AMPAR) is a homotetrameric or heterotetrameric ion channel composed of various combinations of four subunits (GluA1-4), and its abundance in the synapse determines the strength of synaptic activity. The formation of oligomers in the endoplasmatic reticulum (ER) is crucial for AMPAR subunits' ER-exit and translocation to the cell membrane. Although N-glycosylation on different AMPAR subunits has been shown to regulate the ER-exit of hetero-oligomers, its role in the ER-exit of homo-oligomers remains unclear. In this study, we investigated the role of N-glycans at GluA1N63/N363 and GluA2N370 in ER-exit under the homo-oligomeric expression conditions, whose mutants are known to show low cell surface expressions. In contrast to the N-glycosylation site mutant GluA1N63Q, the cell surface expression levels of GluA1N363Q and GluA2N370Q increased in a time-dependent manner. Unlike wild-type (WT) GluA1, GluA2WT rescued surface GluA2N370Q expression. Additionally, the expression of GluA1N63Q reduced the cell surface expression level of GluA1WT. In conclusion, our findings suggest that these N-glycans have distinct roles in the ER-exit of GluA1 and GluA2 homo-oligomers; N-glycan at GluA1N63 is a prerequisite for GluA1 ER-exit, whereas N-glycans at GluA1N363 and GluA2N370 control the ER-exit rate.


Subject(s)
Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Amino Acid Substitution , Binding Sites/genetics , Cell Membrane/metabolism , Gene Expression , Glycosylation , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Mutagenesis, Site-Directed , Mutation , Protein Structure, Quaternary , Receptors, Glutamate/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
13.
Nat Commun ; 10(1): 5245, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748519

ABSTRACT

The number and subunit compositions of AMPA receptors (AMPARs), hetero- or homotetramers composed of four subunits GluA1-4, in the synapse is carefully tuned to sustain basic synaptic activity. This enables stimulation-induced synaptic plasticity, which is central to learning and memory. The AMPAR tetramers have been widely believed to be stable from their formation in the endoplasmic reticulum until their proteolytic decomposition. However, by observing GluA1 and GluA2 at the level of single molecules, we find that the homo- and heterotetramers are metastable, instantaneously falling apart into monomers, dimers, or trimers (in 100 and 200 ms, respectively), which readily form tetramers again. In the dendritic plasma membrane, GluA1 and GluA2 monomers and dimers are far more mobile than tetramers and enter and exit from the synaptic regions. We conclude that AMPAR turnover by lateral diffusion, essential for sustaining synaptic function, is largely done by monomers of AMPAR subunits, rather than preformed tetramers.


Subject(s)
Neuronal Plasticity , Neurons/metabolism , Receptors, AMPA/metabolism , Synapses/metabolism , Animals , CHO Cells , Cell Membrane/metabolism , Cricetulus , Dendrites/metabolism , Diffusion , HEK293 Cells , Humans , Mice , Microscopy, Fluorescence , Patch-Clamp Techniques , Single Molecule Imaging
14.
FASEB J ; 33(6): 7387-7402, 2019 06.
Article in English | MEDLINE | ID: mdl-30860871

ABSTRACT

Glucocorticoids (GCs) potently induce T-cell apoptosis in a GC receptor (GR)-dependent manner and are used to control lymphocyte function in clinical practice. However, its downstream pathways remain controversial. Here, we showed that GC-induced transcript 1 (GLCCI1) is a novel downstream molecule of the GC-GR cascade that acts as an antiapoptotic mediator in thymic T cells. GLCCI1 was highly phosphorylated and colocalized with microtubules in GLCCI1-transfected human embryonic kidney QBI293A cells. GR-dependent up-regulation of GLCCI1 was associated with GC-induced proapoptotic events in a cultured thymocyte cell line. However, GLCCI1 knockdown in a thymocyte cell line led to apoptosis. Consistently, transgenic mice overexpressing human GLCCI1 displayed enlarged thymi that consisted of larger numbers of thymocytes. Further molecular characterization showed that GLCCI1 bound to both dynein light chain LC8-type 1 (LC8) and its functional kinase, p21-protein activated kinase 1 (PAK1), thereby inhibiting the kinase activity of PAK1 toward LC8 phosphorylation, a crucial event in apoptotic signaling. GLCCI1 induction facilitated LC8 dimer formation and reduced Bim expression. Thus, GLCCI1 is a candidate factor involved in apoptosis regulation of thymic T cells.-Kiuchi, Z., Nishibori, Y., Kutsuna, S., Kotani, M., Hada, I., Kimura, T., Fukutomi, T., Fukuhara, D., Ito-Nitta, N., Kudo, A., Takata, T., Ishigaki, Y., Tomosugi, N., Tanaka, H., Matsushima, S., Ogasawara, S., Hirayama, Y., Takematsu, H., Yan, K. GLCCI1 is a novel protector against glucocorticoid-induced apoptosis in T cells.


Subject(s)
Apoptosis/physiology , Glucocorticoids/physiology , Receptors, Glucocorticoid/physiology , T-Lymphocytes/cytology , Amino Acid Sequence , Animals , Apoptosis/drug effects , Bcl-2-Like Protein 11/biosynthesis , Bcl-2-Like Protein 11/genetics , Cell Line , Cytoplasmic Dyneins/metabolism , Dimerization , Down-Regulation , Gene Knockdown Techniques , Glucocorticoids/pharmacology , Humans , Hypertrophy , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microtubules/metabolism , Phosphorylation , Protein Interaction Mapping , Protein Processing, Post-Translational , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Receptors, Glucocorticoid/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction/physiology , Thymus Gland/pathology , p21-Activated Kinases/metabolism
15.
PLoS One ; 14(1): e0210193, 2019.
Article in English | MEDLINE | ID: mdl-30629639

ABSTRACT

The human natural killer-1 (HNK-1) carbohydrate epitope, composed of a unique sulfated trisaccharide (HSO3-3GlcAß1-3Galß1-4GlcNAc-R), is highly expressed during brain development and regulates higher brain function. However, it remains unclear which glycoprotein carries the HNK-1 epitope in the embryonic brain and the functional role it plays. Here, we showed that one of the major HNK-1 carrier proteins in the embryonic brain is tenascin-C (TNC), an extracellular matrix protein that regulates neurite outgrowth by interacting with the GPI-anchored protein contactin-1 (CNTN). Because the alternatively spliced fibronectin type-III (FNIII) repeats in TNC give rise to many isoforms and affect neuronal function, we evaluated neurite outgrowth of primary hippocampal neurons on purified recombinant FNIII repeats with or without the HNK-1 epitope as a substrate. We found that the presence of the HNK-1 epitope on the C domain of TNC promoted neurite outgrowth, and that this signal was mediated by CNTN, which is an HNK-1-expressing neuronal receptor. The neurite-promoting activity of the HNK-1 epitope on TNC required neuronal HNK-1 expression, which was defective in neurons lacking the glucuronyltransferases GlcAT-P and GlcAT-S. These results suggest that the HNK-1 epitope is a key modifier of TNC and CNTN in the regulation of embryonic brain development.


Subject(s)
CD57 Antigens/immunology , Contactin 1/physiology , Hippocampus/growth & development , Neuronal Outgrowth/immunology , Tenascin/immunology , Alternative Splicing/immunology , Animals , Embryo, Mammalian , Epitopes/immunology , Fibronectin Type III Domain/genetics , Fibronectin Type III Domain/immunology , Glucuronosyltransferase/genetics , HEK293 Cells , Hippocampus/cytology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurites/physiology , Neuronal Outgrowth/genetics , Primary Cell Culture , Tenascin/genetics
16.
Front Immunol ; 9: 820, 2018.
Article in English | MEDLINE | ID: mdl-29725338

ABSTRACT

Sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed in various immune cells and most of them carry signaling functions. High-affinity synthetic sialoside ligands have been developed for various Siglecs. Therapeutic potentials of the nanoparticles and compounds that contain multiple numbers of these sialosides and other reagents such as toxins and antigens have been demonstrated. However, whether immune responses can be regulated by monomeric sialoside ligands has not yet been known. CD22 (also known as Siglec-2) is an inhibitory molecule preferentially expressed in B lymphocytes (B cells) and is constitutively bound and functionally regulated by α2,6 sialic acids expressed on the same cell (cis-ligands). Here, we developed synthetic sialosides GSC718 and GSC839 that bind to CD22 with high affinity (IC50 ~100 nM), and inhibit ligand binding of CD22. When B cells are activated by B cell antigen receptor (BCR) ligation, both GSC718 and GSC839 downregulate proliferation of B cells, and this regulation requires both CD22 and α2,6 sialic acids. This result suggests that these sialosides regulate BCR ligation-induced B cell activation by reversing endogenous ligand-mediated regulation of CD22. By contrast, GSC718 and GSC839 augment B cell proliferation induced by TLR ligands or CD40 ligation, and this augmentation requires CD22 but not α2,6 sialic acids. Thus, these sialosides appear to enhance B cell activation by directly suppressing the inhibitory function of CD22 independently of endogenous ligand-mediated regulation. Moreover, GSC839 augments B cell proliferation that depends on both BCR ligation and CD40 ligation as is the case for in vivo B cell responses to antigens, and enhanced antibody production to the extent comparable to CpG oligonuleotides or a small amount of alum. Although these known adjuvants induce production of the inflammatory cytokines or accumulation of inflammatory cells, CD22-binding sialosides do not. Thus, synthetic sialosides that bind to CD22 with high-affinity modulate B cell activation through endogenous ligand-dependent and independent pathways, and carry an adjuvant activity without inducing inflammation.


Subject(s)
Antibody Formation , B-Lymphocytes/immunology , Cell Proliferation/drug effects , Lymphocyte Activation/drug effects , Sialic Acid Binding Ig-like Lectin 2/metabolism , Sialic Acids/metabolism , Adjuvants, Immunologic , Animals , B-Lymphocytes/drug effects , Ligands , Mice , Mice, Inbred C57BL , Polysaccharides/immunology , Protein Binding , Receptors, Antigen, B-Cell/immunology , Sialic Acid Binding Ig-like Lectin 2/immunology , Signal Transduction
17.
Sci Rep ; 8(1): 1244, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352143

ABSTRACT

Cellular translation should be precisely controlled in response to extracellular cues. However, knowledge is limited concerning signal transduction-regulated translation. In the present study, phosphorylation was identified in the 40S small subunit ribosomal protein uS7 (Yjr123w/previously called as Rps5) by Ypk1 and Pkc1, AGC family protein kinases in yeast Saccharomyces cerevisiae. Serine residue 223 (Ser223) of uS7 in the conserved C-terminal region was crucial for this phosphorylation event. S223A mutant uS7 caused severe reduction of small ribosomal subunit production, likely due to compromised interaction with Rio2, resulting in both reduced translation and reduced cellular proliferation. Contrary to optimal culture conditions, heat stressed S223A mutant cells exhibited increased heat resistance and induced heat shock proteins. Taken together, an intracellular signal transduction pathway involving Ypk1/Pkc1 seemed to play an important role in ribosome biogenesis and subsequent cellular translation, utilizing uS7 as a substrate.


Subject(s)
Protein Processing, Post-Translational , Ribosomal Proteins/metabolism , Ribosome Subunits, Small/metabolism , Heat-Shock Response , Mutation , Phosphorylation , Protein Domains , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
18.
Biochem Biophys Res Commun ; 495(1): 854-859, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29146181

ABSTRACT

Lectins expressed on the cell surface are often bound and regulated by the membrane molecules containing the glycan ligands on the same cell (cis-ligands). However, molecular nature and function of cis-ligands are generally poorly understood partly because of weak interaction between lectins and glycan ligands. Cis-ligands are most extensively studied in CD22 (also known as Siglec-2), an inhibitory B lymphocyte receptor specifically recognizing α2,6 sialic acids. CD22, CD45 and IgM are suggested to be ligands of CD22. Here we labeled molecules in the proximity of CD22 in situ on B cell surface using biotin-tyramide. Molecules including CD22, CD45 and IgM were labeled in wild-type but not ST6GalI-/- B cells that lack α2,6 sialic acids, indicating that these molecules associate with CD22 by lectin-glycan interaction, and are therefore cis-ligands. In ST6GalI-/- B cells, these cis-ligands are located in a slightly more distance from CD22. Thus, the lectin-glycan interaction recruits cis-ligands already located in the relative proximity of CD22 through non-lectin-glycan interaction to the close proximity. Moreover, cis-ligands are labeled in Cmah-/- B cells that lack Neu5Gc preferred by mouse CD22 as efficiently as in wild-type B cells, indicating that very low affinity lectin-glycan interaction is sufficient for recruiting cis-ligands, and can be detected by proximity labeling. Thus, proximity labeling with tyramide appears to be a useful method to identify cis-ligands and to analyze their interaction with the lectins.


Subject(s)
B-Lymphocytes/metabolism , N-Acetylneuraminic Acid/metabolism , Protein Interaction Mapping/methods , Sialic Acid Binding Ig-like Lectin 2/metabolism , Animals , Cells, Cultured , Lectins/metabolism , Mice , Protein Binding , Staining and Labeling/methods
19.
FEBS Lett ; 591(22): 3721-3729, 2017 11.
Article in English | MEDLINE | ID: mdl-29029364

ABSTRACT

Glucose uptake is crucial for providing both an energy source and a signal that regulates cell proliferation. Therefore, it is important to clarify the mechanisms underlying glucose uptake and its transmission to intracellular signaling pathways. In this study, we searched for a novel regulatory factor involved in glucose-induced signaling by using Saccharomyces cerevisiae as a eukaryotic model. Requirement of the extracellular protein Ecm33 in efficient glucose uptake and full activation of the nutrient-responsive TOR kinase complex 1 (TORC1) signaling pathway is shown. Cells lacking Ecm33 elicit a series of starvation-induced pathways even in the presence of extracellular high glucose concentration. This results in delayed cell proliferation, reduced ATP, induction of autophagy, and dephosphorylation of the TORC1 substrates Atg13 and Sch9.


Subject(s)
Glucose/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/growth & development , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adenosine Triphosphate/metabolism , Autophagy , Autophagy-Related Proteins/metabolism , Cell Proliferation , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/metabolism , Signal Transduction
20.
Biochim Biophys Acta Gen Subj ; 1861(10): 2455-2461, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28709864

ABSTRACT

BACKGROUND: The human natural killer-1 (HNK-1) carbohydrate, a unique trisaccharide possessing sulfated glucuronic acid in a non-reducing terminus (HSO3-3GlcAß1-3Galß1-4GlcNAc-), is highly expressed in the nervous system and its spatiotemporal expression is strictly regulated. Mice deficient in the gene encoding a key enzyme, GlcAT-P, of the HNK-1 biosynthetic pathway exhibit almost complete disappearance of the HNK-1 epitope in the brain, significant reduction of long-term potentiation, and aberration of spatial learning and memory formation. In addition to its physiological roles in higher brain function, the HNK-1 carbohydrate has attracted considerable attention as an autoantigen associated with peripheral demyelinative neuropathy, which relates to IgM paraproteinemia, because of high immunogenicity. It has been suggested, however, that serum autoantibodies in IgM anti-myelin-associated glycoprotein (MAG) antibody-associated neuropathy patients show heterogeneous reactivity to the HNK-1 epitope. SCOPE OF REVIEW: We have found that structurally distinct HNK-1 epitopes are expressed in specific proteins in the nervous system. Here, we overview the current knowledge of the involvement of these HNK-1 epitopes in the regulation of neural plasticity and discuss the impact of different HNK-1 antigens of anti-MAG neuropathy patients. MAJOR CONCLUSIONS: We identified the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit GluA2 and aggrecan as HNK-1 carrier proteins. The HNK-1 epitope on GluA2 and aggrecan regulates neural plasticity in different ways. Furthermore, we found the clinical relationship between reactivity of autoantibodies to the different HNK-1 epitopes and progression of anti-MAG neuropathy. GENERAL SIGNIFICANCE: The HNK-1 epitope is indispensable for the acquisition of normal neuronal function and can be a good target for the establishment of diagnostic criteria for anti-MAG neuropathy.


Subject(s)
CD57 Antigens/chemistry , Epitopes/chemistry , Myelin-Associated Glycoprotein/immunology , Neuronal Plasticity , Paraproteinemias/immunology , Peripheral Nervous System Diseases/immunology , Aggrecans/metabolism , Animals , Autoantibodies/biosynthesis , CD57 Antigens/genetics , CD57 Antigens/immunology , Epitopes/genetics , Epitopes/immunology , Glucuronosyltransferase/deficiency , Glucuronosyltransferase/genetics , Humans , Immunoglobulin M/biosynthesis , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Mice , Mice, Knockout , Myelin-Associated Glycoprotein/genetics , Paraproteinemias/genetics , Paraproteinemias/pathology , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/pathology , Receptors, AMPA/genetics , Receptors, AMPA/immunology
SELECTION OF CITATIONS
SEARCH DETAIL