Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Zebrafish ; 20(6): 229-235, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38010808

ABSTRACT

The longevity of sperm in teleost such as zebrafish and medaka is short when isolated even in saline-balanced solution at a physiological temperature. In contrast, some internal fertilizers exhibit the long-term storage of sperm, >10 months, in the female reproductive tract. This evidence implies that sperm in teleost possesses the ability to survive for a long time under suitable conditions; however, these conditions are not well understood. In this study, we show that the sperm of zebrafish can survive and maintain fertility in L-15-based storage medium supplemented with bovine serum albumin, fetal bovine serum, glucose, and lactic acid for 28 days at room temperature. The fertilized embryos developed to normal fertile adults. This storage medium was effective in medaka sperm stored for 7 days at room temperature. These results suggest that sperm from external fertilizer zebrafish and medaka has the ability to survive for at least 4 and 1 week, respectively, in the body fluid-like medium at a physiological temperature. This sperm storage method allows researchers to ship sperm by low-cost methods and to investigate key factors for motility and fertile ability in those sperm.


Subject(s)
Oryzias , Semen Preservation , Male , Female , Animals , Zebrafish , Oryzias/physiology , Temperature , Semen , Spermatozoa/physiology , Semen Preservation/veterinary , Semen Preservation/methods , Sperm Motility/physiology
2.
PLoS Biol ; 20(6): e3001678, 2022 06.
Article in English | MEDLINE | ID: mdl-35687590

ABSTRACT

Cells must adjust the expression levels of metabolic enzymes in response to fluctuating nutrient supply. For glucose, such metabolic remodeling is highly dependent on a master transcription factor ChREBP/MondoA. However, it remains elusive how glucose fluctuations are sensed by ChREBP/MondoA despite the stability of major glycolytic pathways. Here, we show that in both flies and mice, ChREBP/MondoA activation in response to glucose ingestion involves an evolutionarily conserved glucose-metabolizing pathway: the polyol pathway. The polyol pathway converts glucose to fructose via sorbitol. It has been believed that this pathway is almost silent, and its activation in hyperglycemic conditions has deleterious effects on human health. We show that the polyol pathway regulates the glucose-responsive nuclear translocation of Mondo, a Drosophila homologue of ChREBP/MondoA, which directs gene expression for organismal growth and metabolism. Likewise, inhibition of the polyol pathway in mice impairs ChREBP's nuclear localization and reduces glucose tolerance. We propose that the polyol pathway is an evolutionarily conserved sensing system for glucose uptake that allows metabolic remodeling.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Glucose , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Carbohydrate Metabolism , Drosophila/metabolism , Glucose/metabolism , Mice , Polymers , Transcription Factors/metabolism
3.
iScience ; 25(4): 104008, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35310947

ABSTRACT

Meiotic prophase I is a prolonged G2 phase that ensures the completion of numerous meiosis-specific chromosome events. During meiotic prophase I, homologous chromosomes undergo synapsis to facilitate meiotic recombination yielding crossovers. It remains largely elusive how homolog synapsis is temporally maintained and destabilized during meiotic prophase I. Here we show that FBXO47 is the stabilizer of the synaptonemal complex during male meiotic prophase I. Disruption of FBXO47 shows severe impact on homologous chromosome synapsis, meiotic recombination, and XY body formation, leading to male infertility. Notably, in the absence of FBXO47, although once homologous chromosomes are synapsed, the synaptonemal complex is precociously disassembled before progressing beyond pachytene. Remarkably, Fbxo47 KO spermatocytes remain in an earlier stage of meiotic prophase I and lack crossovers, despite apparently exhibiting diplotene-like chromosome morphology. We propose that FBXO47 plays a crucial role in preventing the synaptonemal complex from premature disassembly during cell cycle progression of meiotic prophase I.

4.
Nat Commun ; 12(1): 3184, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34075040

ABSTRACT

During spermatogenesis, meiosis is accompanied by a robust alteration in gene expression and chromatin status. However, it remains elusive how the meiotic transcriptional program is established to ensure completion of meiotic prophase. Here, we identify a protein complex that consists of germ-cell-specific zinc-finger protein ZFP541 and its interactor KCTD19 as the key transcriptional regulators in mouse meiotic prophase progression. Our genetic study shows that ZFP541 and KCTD19 are co-expressed from pachytene onward and play an essential role in the completion of the meiotic prophase program in the testis. Furthermore, our ChIP-seq and transcriptome analyses identify that ZFP541 binds to and suppresses a broad range of genes whose function is associated with biological processes of transcriptional regulation and covalent chromatin modification. The present study demonstrates that a germ-cell specific complex that contains ZFP541 and KCTD19 promotes the progression of meiotic prophase towards completion in male mice, and triggers the reconstruction of the transcriptional network and chromatin organization leading to post-meiotic development.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Nuclear Proteins/metabolism , Pachytene Stage/genetics , Potassium Channels, Voltage-Gated/metabolism , Spermatids/cytology , Spermatogenesis/genetics , Transcription Factors/metabolism , Animals , Cell Cycle Proteins/genetics , Chromatin Immunoprecipitation Sequencing , Chromosomal Proteins, Non-Histone/genetics , Disease Models, Animal , Female , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/metabolism , Humans , Infertility, Male/genetics , Male , Mice , Mice, Knockout , Nuclear Proteins/genetics , Oocytes/cytology , Oocytes/metabolism , Potassium Channels, Voltage-Gated/genetics , RNA-Seq , Spermatids/metabolism , Transcription Factors/genetics , Transcription, Genetic
5.
Front Cell Dev Biol ; 9: 664377, 2021.
Article in English | MEDLINE | ID: mdl-33842489

ABSTRACT

In meiotic prophase I, homologous chromosomes are bound together by the synaptonemal complex, in which two axial elements are connected by transverse filaments and central element proteins. In human and zebrafish spermatocytes, homologous recombination and assembly of the synaptonemal complex initiate predominantly near telomeres. In mice, synapsis is not required for meiotic double-strand breaks (DSBs) and homolog alignment but is required for DSB repair; however, the interplay of these meiotic events in the context of peritelomeric bias remains unclear. In this study, we identified a premature stop mutation in the zebrafish gene encoding the transverse filament protein Sycp1. In sycp1 mutant zebrafish spermatocytes, axial elements were formed and paired at chromosome ends between homologs during early to mid-zygonema. However, they did not synapse, and their associations were mostly lost in late zygotene- or pachytene-like stages. In sycp1 mutant spermatocytes, γH2AX signals were observed, and Dmc1/Rad51 and RPA signals appeared predominantly near telomeres, resembling wild-type phenotypes. We observed persistent localization of Hormad1 along the axis in sycp1 mutant spermatocytes, while the majority of Iho1 signals appeared and disappeared with kinetics similar to those in wild-type spermatocytes. Notably, persistent Iho1 foci were observed in spo11 mutant spermatocytes, suggesting that Iho1 dissociation from axes occurs in a DSB-dependent manner. Our results demonstrated that Sycp1 is not required for peritelomeric DSB formation but is necessary for complete pairing of homologs in zebrafish meiosis.

6.
Sci Rep ; 10(1): 10094, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32572094

ABSTRACT

FZR1/CDH1 is an activator of Anaphase promoting complex/Cyclosome (APC/C), best known for its role as E3 ubiquitin ligase that drives the cell cycle. APC/C activity is regulated by CDK-mediated phosphorylation of FZR1 during mitotic cell cycle. Although the critical role of FZR1 phosphorylation has been shown mainly in yeast and in vitro cell culture studies, its biological significance in mammalian tissues in vivo remained elusive. Here, we examined the in vivo role of FZR1 phosphorylation using a mouse model, in which non-phosphorylatable substitutions were introduced in the putative CDK-phosphorylation sites of FZR1. Although ablation of FZR1 phosphorylation did not show substantial consequences in mouse somatic tissues, it led to severe testicular defects resulting in male infertility. In the absence of FZR1 phosphorylation, male juvenile germ cells entered meiosis normally but failed to enter meiosis II or form differentiated spermatids. In aged testis, male mutant germ cells were overall abolished, showing Sertoli cell-only phenotype. In contrast, female mutants showed apparently normal progression of meiosis. The present study demonstrated that phosphorylation of FZR1 is required for temporal regulation of APC/C activity at meiosis II entry, and for maintenance of spermatogonia, which raised an insight into the sexual dimorphism of FZR1-regulation in germ cells.


Subject(s)
Cdh1 Proteins/metabolism , Meiosis/physiology , Anaphase-Promoting Complex-Cyclosome/metabolism , Animals , Cdh1 Proteins/physiology , Cell Cycle Proteins/metabolism , Gene Knock-In Techniques/methods , Germ Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphorylation , Spermatogenesis/physiology , Spermatogonia/metabolism , Ubiquitin-Protein Ligases/metabolism
7.
Cell Rep ; 31(8): 107686, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32460033

ABSTRACT

Meiotic recombination is critical for genetic exchange and generation of chiasmata that ensures faithful chromosome segregation during meiosis I. Meiotic recombination is initiated by DNA double-strand break (DSB) followed by multiple processes of DNA repair. The exact mechanisms for how recombinases localize to DSB remain elusive. Here, we show that C19orf57/4930432K21Rik/BRME1 is a player for meiotic recombination in mice. C19orf57/4930432K21Rik/BRME1 associates with single-stranded DNA (ssDNA) binding proteins, BRCA2 and MEILB2/HSF2BP, which are critical recruiters of recombinases onto DSB sites. Disruption of C19orf57/4930432K21Rik/BRME1 shows severe impact on DSB repair and male fertility. Remarkably, removal of ssDNA binding proteins from DSB sites is delayed, and reciprocally, the loading of RAD51 and DMC1 onto resected ssDNA is impaired in Brme1 knockout (KO) spermatocytes. We propose that C19orf57/4930432K21Rik/BRME1 modulates localization of recombinases to meiotic DSB sites through the interaction with the BRCA2-MEILB2/HSF2BP complex during meiotic recombination.


Subject(s)
Cell Cycle Proteins/metabolism , Homologous Recombination/genetics , Meiosis/genetics , Phosphate-Binding Proteins/metabolism , Rad51 Recombinase/metabolism , Spermatocytes/metabolism , Spermatogenesis/genetics , Animals , DNA Breaks, Double-Stranded , Male , Mice
8.
PLoS Genet ; 16(2): e1008640, 2020 02.
Article in English | MEDLINE | ID: mdl-32092049

ABSTRACT

Meiotic recombination is essential for faithful segregation of homologous chromosomes during gametogenesis. The progression of recombination is associated with dynamic changes in meiotic chromatin structures. However, whether Sycp2, a key structural component of meiotic chromatin, is required for the initiation of meiotic recombination is still unclear in vertebrates. Here, we describe that Sycp2 is required for assembly of the synaptonemal complex and early meiotic events in zebrafish spermatocytes. Our genetic screening by N-ethyl-N-nitrosourea mutagenesis revealed that ietsugu (its), a mutant zebrafish line with an aberrant splice site in the sycp2 gene, showed a defect during meiotic prophase I. The its mutation appeared to be a hypomorphic mutation compared to sycp2 knockout mutations generated by TALEN mutagenesis. Taking advantage of these sycp2 hypomorphic and knockout mutant lines, we demonstrated that Sycp2 is required for the assembly of the synaptonemal complex that is initiated in the vicinity of telomeres in wild-type zebrafish spermatocytes. Accordingly, homologous pairing, the foci of the meiotic recombinases Dmc1/Rad51 and RPA, and γH2AX signals were largely diminished in sycp2 knockout spermatocytes. Taken together, our data indicate that Sycp2 plays a critical role in not only the assembly of the synaptonemal complex, but also early meiotic recombination and homologous pairing, in vertebrates.


Subject(s)
Cell Cycle Proteins/metabolism , Homologous Recombination , Nuclear Proteins/metabolism , Spermatocytes/metabolism , Synaptonemal Complex/metabolism , Zebrafish Proteins/metabolism , Zebrafish/physiology , Animals , Animals, Genetically Modified , Cell Cycle Proteins/genetics , Gene Knockout Techniques , Male , Mutation , Nuclear Proteins/genetics , Synaptonemal Complex/genetics , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...