Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 89(6): 3167-3182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38638061

ABSTRACT

Isochoric (constant volume) freezing is a novel food preservation technology that has demonstrated the ability to preserve food products at subfreezing temperatures in an unfrozen state, thereby avoiding the detrimental effects of ice formation. It minimizes the quality loss of fresh fruits and juices, increases their nutrient content, and reduces microbial counts. Orange juice (OJ) samples were subjected to conventional freezing (CF) and isochoric freezing (IF) for 7 days and then stored at 4°C for an additional 7 days. We evaluated the microbiological and physicochemical quality of CF and IF OJ before and after storage. The IF was performed at three different conditions: -5°C/73 MPa, -10°C/93 MPa, and -15°C/143 MPa. The results indicate that the total aerobic count of OJ remained below the detection limit after heat treatment, 7 days of CF and 7 days of IF. Yeast and mold counts increased in fresh and CF OJ after 7 days of storage at 4°C, whereas IF OJ remained below the detection limit. Less color difference was observed in IF (-15°C/143 MPa) OJ compared to heat-treated and CF OJ. Heat treatment inactivated 42% of pectin methylesterase (PME), whereas 7-day long IF increased PME activity up to 150%. Additionally, IF (-15°C/143 MPa) OJ showed reduced pulp sedimentation, which can be advantageous, as sedimentation in juices has been a recognized technological issue in the juice industry. Ascorbic acid level was significantly higher in IF (-15°C/143 MPa) OJ compared to fresh and CF OJ after storage.


Subject(s)
Citrus sinensis , Food Preservation , Freezing , Fruit and Vegetable Juices , Citrus sinensis/microbiology , Citrus sinensis/chemistry , Fruit and Vegetable Juices/analysis , Fruit and Vegetable Juices/microbiology , Food Preservation/methods , Carboxylic Ester Hydrolases/analysis , Food Storage/methods , Colony Count, Microbial , Fruit/microbiology , Fruit/chemistry , Food Microbiology/methods , Color
2.
J Food Sci ; 89(3): 1347-1360, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38258913

ABSTRACT

Pomegranate juice was treated by isochoric freezing (-15°C/130 MPa) for 24 h and then stored under three different conditions for up to 4 weeks: 4°C/0.1 MPa, 24°C/0.1 MPa, and -10°C/100 MPa. The juice microbiological stability and quality were compared to those using heat treatment at 95°C for 15 s followed by cold storage at 4°C. Heat-treated and isochoric frozen (IF) pomegranate juice stored under isochoric conditions showed no spoilage microorganisms after 4 weeks of storage. Also, IF juice stored at 4 or 24°C for 4 weeks had lower microbial loads than those in fresh pomegranate juice. IF juice stored under isochoric conditions showed greater color stability, antioxidant capacity, and nutrient retention (anthocyanins, ascorbic acid, and total phenolic compounds) than heat-treated juices stored at 4°C. IF juice stored at 4°C also showed greater anthocyanin and ascorbic acid contents compared with heat-treated juice. PRACTICAL APPLICATION: Isochoric freezing storage at -10°C can be used to preserve the quality properties of fresh pomegranate juice. Isochoric freezing at -15°C for 24 h can also be used as a pretreatment to extend the shelf life of refrigerated pomegranate juice since the applied pressures reached total inactivation levels of spoilage microorganisms.


Subject(s)
Pomegranate , Freezing , Anthocyanins , Antioxidants , Ascorbic Acid
SELECTION OF CITATIONS
SEARCH DETAIL