Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 3038, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810765

ABSTRACT

The purpose of the present study was to fabricate a miniscrew possible for clinical application using Zr70Ni16Cu6Al8 bulk metallic glass (BMG), which has high mechanical strength, low elastic modulus, and high biocompatibility. First, the elastic moduli of Zr-based metallic glass rods made of Zr55Ni5Cu30Al10, Zr60Ni10Cu20Al10, Zr65Ni10Cu17.5Al7.5, Zr68Ni12Cu12Al8, and Zr70Ni16Cu6Al8 were measured. Zr70Ni16Cu6Al8 had the lowest elastic modulus among them. Then, we fabricated Zr70Ni16Cu6Al8 BMG miniscrews with diameters from 0.9 to 1.3 mm, conducted a torsion test, and implanted them into the alveolar bone of beagle dogs to compare insertion torque, removal torque, Periotest, new bone formation around the miniscrew, and failure rate compared with 1.3 mm diameter Ti-6Al-4 V miniscrew. The Zr70Ni16Cu6Al8 BMG miniscrew exhibited a high torsion torque even if the miniscrew had a small diameter. Zr70Ni16Cu6Al8 BMG miniscrews with a diameter of 1.1 mm or less had higher stability and lower failure rate than 1.3 mm diameter Ti-6Al-4 V miniscrews. Furthermore, the smaller diameter Zr70Ni16Cu6Al8 BMG miniscrew was shown, for the first time, to have a higher success rate and to form more new bone around the miniscrew. These findings suggested the usefulness of our novel small miniscrew made of Zr70Ni16Cu6Al8 BMG for orthodontic anchorage.


Subject(s)
Bone Screws , Glass , Animals , Dogs , Torque , Mandible/surgery
2.
Methods Mol Biol ; 2582: 237-253, 2023.
Article in English | MEDLINE | ID: mdl-36370354

ABSTRACT

Chemotaxis is a directed migration of cells in response to a gradient of extracellular molecules called chemoattractants. Development, growth, remodeling, and fracture healing of bones are advanced through intramembranous osteogenesis. Chemotaxis of preosteoblasts toward future bone formation sites observed in the early stage of intramembranous osteogenesis is a critical cellular process for normal bone formation. However, molecular biological mechanisms of the chemotaxis of preosteoblasts are not fully understood. We have recently clarified, for the first time, the critical role of the cellular communication network factor 2 (CCN2)/connective tissue growth factor (CTGF)-integrin α5-Ras axis for chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis. In this chapter, we describe in detail the procedures of the in vivo and in vitro assays to investigate the chemotactic property of CCN2/CTGF and its underlying molecular biological mechanisms during intramembranous osteogenesis.


Subject(s)
Connective Tissue Growth Factor , Osteogenesis , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Osteogenesis/physiology , Chemotaxis
3.
Eur J Orthod ; 44(6): 698-704, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36111523

ABSTRACT

BACKGROUND: We previously found the conditions of supplementary vibration that accelerated tooth movement and induced bone resorption in an experimental rat tooth movement model. However, the molecular biological mechanisms underlying supplementary vibration-induced orthodontic tooth movement are not fully understood. Transforming growth factor (TGF)-ß upregulates osteoclastogenesis via induction of the receptor activator of nuclear factor kappa B ligand expression, thus TGF-ß is considered an essential cytokine to induce bone resorption. OBJECTIVES: The aim of this study is to examine the role of TGF-ß during the acceleration of orthodontic tooth movement by supplementary vibration. MATERIALS AND METHODS: In experimental tooth movement, 15 g of orthodontic force was loaded onto the maxillary right first molar for 28 days. Supplementary vibration (3 g, 70 Hz) was applied to the maxillary first molar for 3 min on days 0, 7, 14, and 21. TGF-ß receptor inhibitor SB431542 was injected into the submucosal palatal and buccal areas of the maxillary first molars once every other day. The co-culture of RAW264.7 cells and MLO-Y4 cells was used as an in vitro osteoclastogenesis model. RESULTS: SB431542 suppressed the acceleration of tooth movement and the increase in the number of osteoclasts by supplementary vibration in our experimental rat tooth movement model. Immunohistochemical analysis showed supplementary vibration increased the number of TGF-ß1-positive osteocytes in the alveolar bone on the compression side during the experimental tooth movement. Moreover, vibration-upregulated TGF-ß1 in MLO-Y4 cells induced osteoclastogenesis. CONCLUSIONS: Orthodontic tooth movement was accelerated by supplementary vibration through the promotion of the production of TGF-ß1 in osteocytes and subsequent osteoclastogenesis.


Subject(s)
Bone Resorption , Tooth Movement Techniques , Rats , Animals , Osteocytes/metabolism , Osteogenesis/physiology , Transforming Growth Factor beta1/metabolism , Vibration , Transforming Growth Factor beta/metabolism , Osteoclasts , Transforming Growth Factors/metabolism
4.
Am J Orthod Dentofacial Orthop ; 161(1): 140-157, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34696924

ABSTRACT

Generally, a canted occlusal plane results in esthetic problems, such as an asymmetric mandible with midline deviation, and functional problems, such as temporomandibular disorder (TMD). For many years, orthognathic surgery has been used to level a canted occlusal plane. However, similar effects might be achieved by intruding the posterior teeth using a miniscrew. This case report describes a patient with a canted occlusal plane, mandibular deviation, shifted dental midlines, and TMD treated with an edgewise appliance using miniscrews as anchorage. Vertical control of posterior teeth with miniscrews enabled flattening of the canted occlusal plane. Dental midlines were coincided with the midfacial line, thereby improving smile symmetry. During 4 years of retention, the patient maintained ideal occlusion. Furthermore, TMD symptoms disappeared, and significant improvements in stomatognathic functions were observed compared with those at pretreatment. These results suggest that miniscrews can be used to improve canted occlusal plane and stomatognathic malfunctions.


Subject(s)
Dental Occlusion , Temporomandibular Joint Disorders , Cephalometry , Esthetics, Dental , Humans , Mandible , Tooth Movement Techniques
5.
Bone ; 149: 115969, 2021 08.
Article in English | MEDLINE | ID: mdl-33892176

ABSTRACT

During tooth movement in orthodontic treatment, bone formation and resorption occur on the tension and compression sides of the alveolar bone, respectively. Although the bone formation activity increases in the periodontal ligament (PDL) on the tension side, the PDL itself is not ossified and maintains its homeostasis, indicating that there are negative regulators of bone formation in the PDL. Our previous report suggested that scleraxis (Scx) has an inhibitory effect on ossification of the PDL on the tension side through the suppression of calcified extracellular matrix formation. However, the molecular biological mechanisms of Scx-modulated inhibition of ossification in the tensioned PDL are not fully understood. The aim of the present study is to clarify the inhibitory role of Scx in osteoblast differentiation of PDL cells and its underlying mechanism. Our in vivo experiment using a mouse experimental tooth movement model showed that Scx expression was increased during early response of the PDL to tensile force. Scx knockdown upregulated expression of alkaline phosphatase, an early osteoblast differentiation marker, in the tensile force-loaded PDL cells in vitro. Transforming growth factor (TGF)-ß1-Smad3 signaling in the PDL was activated by tensile force and inhibitors of TGF-ß receptor and Smad3 suppressed the tensile force-induced Scx expression in PDL cells. Tensile force induced ephrin A2 (Efna2) expression in the PDL and Efna2 knockdown upregulated alkaline phosphatase expression in PDL cells under tensile force loading. Scx knockdown eliminated the tensile force-induced Efna2 expression in PDL cells. These findings suggest that the TGF-ß1-Scx-Efna2 axis is a novel molecular mechanism that negatively regulates the tensile force-induced osteoblast differentiation of PDL cells.


Subject(s)
Ephrin-A2 , Transforming Growth Factor beta1 , Cell Differentiation , Cells, Cultured , Ligaments , Osteoblasts , Osteogenesis , Periodontal Ligament , Tooth Movement Techniques
6.
Sci Rep ; 11(1): 2368, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504916

ABSTRACT

In vertebrates, new bone formation via intramembranous osteogenesis is a critical biological event for development, remodeling, and fracture healing of bones. Chemotaxis of osteoblast lineage cells is an essential cellular process in new bone formation. Connective tissue growth factor (CTGF) is known to exert chemotactic properties on various cells; however, details of CTGF function in the chemotaxis of osteoblast lineage cells and underlying molecular biological mechanisms have not been clarified. The aim of the present study was to evaluate the chemotactic properties of CTGF and its underlying mechanisms during active bone formation through intramembranous osteogenesis. In our mouse tensile force-induced bone formation model, preosteoblasts were aggregated at the osteogenic front of calvarial bones. CTGF was expressed at the osteogenic front, and functional inhibition of CTGF using a neutralizing antibody suppressed the aggregation of preosteoblasts. In vitro experiments using µ-slide chemotaxis chambers showed that a gradient of CTGF induced chemotaxis of preosteoblastic MC3T3-E1 cells, while a neutralizing integrin α5 antibody and a Ras inhibitor inhibited the CTGF-induced chemotaxis of MC3T3-E1 cells. These findings suggest that the CTGF-integrin α5-Ras axis is an essential molecular mechanism to promote chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis.


Subject(s)
Chemotaxis , Connective Tissue Growth Factor/metabolism , Integrin alpha5/genetics , Osteoblasts/metabolism , Osteogenesis/physiology , Tensile Strength , ras Proteins/genetics , 3T3 Cells , Animals , Biomarkers , Bone and Bones , Cell Differentiation , Chemotaxis/drug effects , Chemotaxis/genetics , Connective Tissue Growth Factor/pharmacology , Fluorescent Antibody Technique , Immunohistochemistry , Integrin alpha5/metabolism , Mice , Osteoblasts/cytology , Signal Transduction , ras Proteins/metabolism
7.
J Cell Physiol ; 236(4): 2906-2919, 2021 04.
Article in English | MEDLINE | ID: mdl-32960451

ABSTRACT

Tenascin-like molecule major (Ten-m)/odd Oz (Odz), a type II transmembrane molecule, is well known to modulate neural development. We have reported that Ten-m/Odz3 is expressed in cartilaginous tissues and cells. Actin cytoskeleton and its regulator ras homolog gene family member A (RhoA) are closely associated with chondrogenesis. The present study aimed to evaluate the function and molecular mechanism of Ten-m/Odz3 during chondrogenesis, focusing on RhoA and the actin cytoskeleton. Ten-m/Odz3 was expressed in precartilaginous condensing mesenchyme in mouse limb buds. Ten-m/Odz3 knockdown in ATDC5 induced actin cytoskeleton reorganization and change of cell shape through modulation of RhoA activity and FGF2 expression. Ten-m/Odz3 knockdown suppressed ATDC5 migration and expression of genes associated with chondrogenesis, such as Sox9 and type II collagen, via RhoA. On the other hand, Ten-m/Odz3 knockdown inhibited proliferation of ATDC5 in a RhoA-independent manner. These findings suggest that Ten-m/Odz3 plays an important role in early chondrogenesis regulating RhoA-mediated actin reorganization.


Subject(s)
Cell Differentiation , Cell Movement , Chondrocytes/cytology , Chondrocytes/metabolism , Chondrogenesis , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Cell Differentiation/genetics , Cell Line , Cell Movement/genetics , Cell Proliferation , Cell Shape , Chondrogenesis/genetics , Fibroblast Growth Factor 2/metabolism , Gene Expression Regulation , Humans , Mice, Inbred C57BL
8.
JBMR Plus ; 4(7): e10369, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32666020

ABSTRACT

Mechanical stress stimulates bone remodeling, which occurs through bone formation and resorption, resulting in bone adaptation in response to the mechanical stress. Osteocytes perceive mechanical stress loaded to bones and promote bone remodeling through various cellular processes. Osteocyte apoptosis is considered a cellular process to induce bone resorption during mechanical stress-induced bone remodeling, but the underlying molecular mechanisms are not fully understood. Recent studies have demonstrated that neuropeptides play crucial roles in bone metabolism. The neuropeptide, methionine enkephalin (MENK) regulates apoptosis positively and negatively depending on cell type, but the role of MENK in osteocyte apoptosis, followed by bone resorption, in response to mechanical stress is still unknown. Here, we examined the roles and mechanisms of MENK in osteocyte apoptosis induced by compressive force. We loaded compressive force to mouse parietal bones, resulting in a reduction of MENK expression in osteocytes. A neutralizing connective tissue growth factor (CTGF) antibody inhibited the compressive force-induced reduction of MENK. An increase in osteocyte apoptosis in the compressive force-loaded parietal bones was inhibited by MENK administration. Nuclear translocation of NFATc1 in osteocytes in the parietal bones was enhanced by compressive force. INCA-6, which inhibits NFAT translocation into nuclei, suppressed the increase in osteocyte apoptosis in the compressive force-loaded parietal bones. NFATc1-overexpressing MLO-Y4 cells showed increased expression of apoptosis-related genes. MENK administration reduced the nuclear translocation of NFATc1 in osteocytes in the compressive force-loaded parietal bones. Moreover, MENK suppressed Ca2+ influx and calcineurin and calmodulin expression, which are known to induce the nuclear translocation of NFAT in MLO-Y4 cells. In summary, this study shows that osteocytes expressed MENK, whereas the MENK expression was suppressed by compressive force via CTGF signaling. MENK downregulated nuclear translocation of NFATc1 probably by suppressing Ca2+ signaling in osteocytes and consequently inhibiting compressive force-induced osteocyte apoptosis, followed by bone resorption. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

9.
Bone Rep ; 12: 100285, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32509933

ABSTRACT

Runt-related transcription factor 2 (Runx2) is an essential transcription factor for osteoblast differentiation, and is activated by mechanical stress to promote osteoblast function. Cleidocranial dysplasia (CCD) is caused by mutations of RUNX2, and CCD patients exhibit malocclusion and often need orthodontic treatment. However, treatment is difficult because of impaired tooth movement, the reason of which has not been clarified. We examined the amount of experimental tooth movement in Runx2+/- mice, the animal model of CCD, and investigated bone formation on the tension side of experimental tooth movement in vivo. Continuous stretch was conducted to bone marrow stromal cells (BMSCs) as an in vitro model of the tension side of tooth movement. Compared to wild-type littermates the Runx2+/- mice exhibited delayed experimental tooth movement, and osteoid formation and osteocalcin (OSC) mRNA expression were impaired in osteoblasts on the tension side of tooth movement. Runx2 heterozygous deficiency delayed stretch-induced increase of DNA content in BMSCs, and also delayed and reduced stretch-induced alkaline phosphatase (ALP) activity, OSC mRNA expression, and calcium content of BMSCs in osteogenic medium. Furthermore Runx2+/- mice exhibited delayed and suppressed expression of mammalian target of rapamycin (mTOR) and rapamycin-insensitive companion of mTOR (Rictor), essential factors of mTORC2, which is regulated by Runx2 to phosphorylate Akt to regulate cell proliferation and differentiation, in osteoblasts on the tension side of tooth movement in vivo and in vitro. Loss of half Runx2 gene dosage inhibited stretch-induced PI3K dependent mTORC2/Akt activity to promote BMSCs proliferation. Furthermore, Runx2+/- BMSCs in osteogenic medium exhibited delayed and suppressed stretch-induced expression of mTOR and Rictor. mTORC2 regulated stretch-elevated Runx2 and ALP mRNA expression in BMSCs in osteogenic medium. We conclude that Runx2+/- mice present a useful model of CCD patients for elucidation of the molecular mechanisms in bone remodeling during tooth movement, and that Runx2 plays a role in stretch-induced proliferation and osteogenesis in BMSCs via mTORC2 activation.

11.
Acta Med Okayama ; 73(3): 255-262, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31235974

ABSTRACT

Orthodontists need to understand the orthodontic risks associated with systemic disorders. Axenfeld-Rieger syndrome (ARS) is a rare autosomal dominant disorder with genetic and morphological variability. The risks of orthodontic treatment in ARS patients have been unclear. Here we describe the correction of an anterior open bite in a 15-year-old Japanese female ARS patient by molar intrusion using sectional archwires with miniscrew implants. An undesirable development of external apical root resorption (EARR) was observed in all intrusive force-applied posterior teeth during the patient's orthodontic treatment, suggesting that ARS patients have a higher risk of EARR than the general population.


Subject(s)
Anterior Eye Segment/abnormalities , Eye Abnormalities/complications , Eye Diseases, Hereditary/complications , Open Bite , Root Resorption/etiology , Adolescent , Alveolar Bone Loss , Bone Screws , Female , Humans , Risk , Tooth Movement Techniques/adverse effects
12.
Bone ; 123: 56-66, 2019 06.
Article in English | MEDLINE | ID: mdl-30902792

ABSTRACT

To shorten the duration of orthodontic treatment it is important not only to reduce risks such as dental caries, periodontal disease, and root resorption, but also to decrease pain and discomfort caused by a fixed appliance. Several studies have investigated the effect of vibration applied to fixed appliances to accelerate tooth movement. Although it was reported that vibration accelerates orthodontic tooth movement by enhancing alveolar bone resorption, the underlying cellular and molecular mechanisms remain unclear. In this study, we investigated the effects of vibration on osteoclastogenesis in vitro and in vivo. Vibration applied to pre-osteoclast cell line RAW264.7 cells enhanced cell proliferation but did not affect their differentiation into osteoclasts. Osteocytes in bone are known to be mechanosensitive and to act as receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL). Therefore, in the present study, vibration was applied to cells from the osteocyte-like cell line MLO-Y4. In MLO-Y4 cells, vibration induced phosphorylation of the inhibitor of NF-κB (IκB) and caused nuclear localization of NF-κB p65. Additionally, vibration increased RANKL mRNA expression, but did not affect osteoprotegerin (OPG) mRNA expression in MLO-Y4 cells, thus resulting in an increased RANKL/OPG ratio. Consistent with these findings, vibration applied during experimental tooth movement increased NF-κB activation and RANKL expression in osteocytes on the compression side of alveolar bone in vivo, whereas vibration had no such effects on the tension side. Furthermore, in a co-culture of MLO-Y4 cells and RAW264.7 cells, vibration applied to MLO-Y4 cells enhanced osteoclastogenesis. These findings suggest that vibration could accelerate orthodontic tooth movement by enhancing osteoclastogenesis through increasing the number of pre-osteoclasts and up-regulating RANKL expression in osteocytes on the compression side of alveolar bone via NF-κB activation.


Subject(s)
NF-kappa B/metabolism , Osteocytes/metabolism , Osteogenesis/physiology , RANK Ligand/biosynthesis , Signal Transduction/physiology , Vibration , Alveolar Process/metabolism , Animals , Coculture Techniques , Gene Expression , Male , Mice , Osteoclasts/metabolism , RANK Ligand/genetics , RAW 264.7 Cells , Rats , Rats, Wistar
13.
Sci Rep ; 9(1): 368, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30675004

ABSTRACT

Regenerative therapy to replace missing teeth is a critical area of research. Functional bioengineered teeth have been produced by the organ germ method using mouse tooth germ cells. However, these bioengineered teeth are significantly smaller in size and exhibit an abnormal crown shape when compared with natural teeth. The proper sizes and shapes of teeth contribute to their normal function. Therefore, a method is needed to control the morphology of bioengineered teeth. Here, we investigated whether insulin-like growth factor 1 (IGF1) can regulate the sizes and shapes of bioengineered teeth, and assessed underlying mechanisms of such regulation. IGF1 treatment significantly increased the size of bioengineered tooth germs, while preserving normal tooth histology. IGF1-treated bioengineered teeth, which were developed from bioengineered tooth germs in subrenal capsules and jawbones, showed increased sizes and cusp numbers. IGF1 increased the number of fibroblast growth factor (Fgf4)-expressing enamel knots in bioengineered tooth germs and enhanced the proliferation and differentiation of dental epithelial and mesenchymal cells. This study is the first to reveal that IGF1 increases the sizes and cusp numbers of bioengineered teeth via the induction of enamel knot formation, as well as the proliferation and differentiation of dental epithelial and mesenchymal cells.


Subject(s)
Insulin-Like Growth Factor I/genetics , Morphogenesis/genetics , Odontogenesis/genetics , Tissue Engineering , Animals , Biomarkers , Cells, Cultured , Insulin-Like Growth Factor I/metabolism , Mice , Tooth Eruption , Tooth Germ/anatomy & histology , Tooth Germ/growth & development , Tooth Germ/metabolism
14.
Acta Biomater ; 74: 505-517, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29772348

ABSTRACT

Superior mechanical and chemical properties of Zr70Ni16Cu6Al8 bulk metallic glass (BMG) demonstrate its promise as a novel biomaterial for fabrication of implants. The aim of the present study was to validate mechanical, chemical, and biological properties of Zr70Ni16Cu6Al8 BMG through comparison with titanium (Ti). Our data indicated higher tensile strength, lower Young's modulus, and reduced metal ion release of Zr70Ni16Cu6Al8 BMG compared with Ti. Biosafety of bone marrow mesenchymal cells on Zr70Ni16Cu6Al8 BMG was comparable to that of Ti. Next, screw-type implant prototypes made of Zr70Ni16Cu6Al8 BMG were fabricated and inserted into rat long bones. Zr70Ni16Cu6Al8 BMG implants indicated a higher removal-torque value and lower Periotest value compared with Ti implants. In addition, higher amounts of new bone formation and osseointegration were observed around Zr70Ni16Cu6Al8 BMG implants compared with Ti implants. Moreover, gene expression analysis displayed higher expression of osteoblast- and osteoclast-associated genes in the Zr70Ni16Cu6Al8 BMG group compared with the Ti group. Importantly, loading to implants upregulated bone formation, as well as osteoblast- and osteoclast-associated gene expression in the peri-implant area. No significant difference in concentrations of Ni, Al, Cu, and Zr in various organs was shown between in the Zr70Ni16Cu6Al8 BMG and Ti groups. Collectively, these findings suggest that Zr70Ni16Cu6Al8 BMG is suitable for fabricating novel implants with superior mechanical properties, biocompatibility, stability, and biosafety compared with Ti. STATEMENT OF SIGNIFICANCE: Titanium is widely used to fabricate orthopedic and dental implants. However, Titanium has disadvantages for biomedical applications in regard to strength, elasticity, and biosafety. Recently, we developed a novel hypoeutectic Zr70Ni16Cu6Al8 BMG, which has superior mechanical and chemical properties. However, the validity of Zr70Ni16Cu6Al8 BMG for biomedical application has not been cleared. The aim of the present study was to validate the mechanical, chemical, and biological properties of Zr70Ni16Cu6Al8 BMG for biomedical applications through comparison with Titanium. The present study clarifies that Zr70Ni16Cu6Al8 BMG has good mechanical properties, corrosion resistance, and osteogenic activity, which are necessary features for biomedical applications. The present study provides for the first time the superiority of Zr70Ni16Cu6Al8 BMG implants to Titanium implants for biomedical applications.


Subject(s)
Glass/chemistry , Implants, Experimental , Materials Testing , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteogenesis , Aluminum/chemistry , Animals , Copper/chemistry , Gene Expression Regulation , Male , Nickel/chemistry , Osteoblasts/cytology , Osteoclasts/cytology , Rats , Rats, Inbred F344 , Rats, Wistar , Zirconium/chemistry
15.
Sci Rep ; 7(1): 13969, 2017 10 25.
Article in English | MEDLINE | ID: mdl-29070874

ABSTRACT

Several recent prospective clinical trials have investigated the effect of supplementary vibration applied with fixed appliances in an attempt to accelerate tooth movement and shorten the duration of orthodontic treatment. Among them, some studies reported an increase in the rate of tooth movement, but others did not. This technique is still controversial, and the underlying cellular and molecular mechanisms remain unclear. In the present study, we developed a new vibration device for a tooth movement model in rats, and investigated the efficacy and safety of the device when used with fixed appliances. The most effective level of supplementary vibration to accelerate tooth movement stimulated by a continuous static force was 3 gf at 70 Hz for 3 minutes once a week. Furthermore, at this optimum-magnitude, high-frequency vibration could synergistically enhance osteoclastogenesis and osteoclast function via NF-κB activation, leading to alveolar bone resorption and finally, accelerated tooth movement, but only when a static force was continuously applied to the teeth. These findings contribute to a better understanding of the mechanism by which optimum-magnitude high-frequency vibration accelerates tooth movement, and may lead to novel approaches for the safe and effective treatment of malocclusion.


Subject(s)
Acceleration , Osteoclasts/cytology , Static Electricity , Stress, Mechanical , Tooth Movement Techniques/instrumentation , Tooth Movement Techniques/methods , Vibration , Animals , Biomechanical Phenomena , Male , Osteogenesis , Periodontal Ligament/cytology , Rats , Rats, Wistar
16.
J Bone Miner Metab ; 35(1): 40-51, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26825658

ABSTRACT

Sutures are fibrous tissues that connect bones in craniofacial skeletal complexes. Cranio- and dentofacial skeletal deformities in infant and adolescent patients can be treated by applying tensile force to sutures to induce sutural bone formation. The early gene expression induced by mechanical stress is essential for bone formation in long bones; however, early gene expression during sutural bone formation induced by tensile force is poorly characterized. In vivo studies are essential to evaluate molecular responses to mechanical stresses in heterogeneous cell populations, such as sutures. In this paper we examined in vivo early gene expression and the underlying regulatory mechanism for this expression in tensile-force-applied cranial sutures, focusing on genes involved in vascularization. Tensile force upregulated expression of vascular factors, such as vascular endothelial growth factor (Vegf) and endothelial cell markers, in sutures within 3 h. The expression of connective tissue growth factor (Ctgf) and Rho-associated coiled-coil containing protein kinase 2 (Rock2) was also upregulated by tensile force. A CTGF-neutralizing antibody and the ROCK inhibitor, Y-27632, abolished tensile-force-induced Vegf expression. Moreover, tensile force activated extracellular signal-related kinase 1/2 (ERK1/2) signaling in sagittal sutures, and the ERK1/2 inhibitor, U0126, partially inhibited tensile-force-induced Ctgf expression. These results indicate that tensile force induces in vivo gene expression associated with vascularization early in tensile-force-induced sutural bone formation. Moreover, the early induction of Vegf gene expression is regulated by CTGF and ROCK2.


Subject(s)
Cranial Sutures , Gene Expression Regulation/physiology , MAP Kinase Signaling System/physiology , Neovascularization, Physiologic/physiology , Tensile Strength/physiology , Vascular Endothelial Growth Factor A/biosynthesis , Adolescent , Animals , Connective Tissue Growth Factor/metabolism , Cranial Sutures/blood supply , Cranial Sutures/metabolism , Humans , Infant , Male , Mice , Mice, Inbred ICR , Stress, Mechanical , rho-Associated Kinases/metabolism
17.
Methods Mol Biol ; 1489: 283-308, 2017.
Article in English | MEDLINE | ID: mdl-27734385

ABSTRACT

To investigate mechanical-dependent bone remodeling, we had previously applied various types of mechanical loading onto the teeth of rats and mice. In vitro cultured bone cells were then used to elucidate the mechanisms underlying the specific phenomenon revealed by in vivo experiments. This review describes the techniques used to upregulate CCN2 expression in bone cells produced by different types of mechanical stress, such as fluid shear stress and substrate strain in vitro, and compression or tension force in vivo.


Subject(s)
Bone and Bones/metabolism , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Gene Expression , Stress, Mechanical , Animals , Biomarkers , Bite Force , Fractures, Bone/etiology , Fractures, Bone/metabolism , Fractures, Bone/pathology , Immunohistochemistry , In Situ Hybridization , Male , Mice , Rats
18.
Stem Cells Transl Med ; 4(9): 993-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26136503

ABSTRACT

UNLABELLED: The field of tooth regeneration has progressed in recent years, and human tooth regeneration could become viable in the future. Because induced pluripotent stem (iPS) cells can differentiate into odontogenic cells given appropriate conditions, iPS cells are a potential cell source for tooth regeneration. However, a definitive method to induce iPS cell-derived odontogenic cells has not been established. We describe a novel method of odontoblast differentiation from iPS cells using gene transfection. We generated mouse iPS cell-derived neural crest-like cells (iNCLCs), which exhibited neural crest markers. Next, we differentiated iNCLCs into odontoblast-like cells by transfection of Pax9 and Bmp4 expression plasmids. Exogenous Pax9 upregulated expression of Msx1 and dentin matrix protein 1 (Dmp1) in iNCLCs but not bone morphogenetic protein 4 (Bmp4) or dentin sialophosphoprotein (Dspp). Exogenous Bmp4 upregulated expression of Msx1, Dmp1, and Dspp in iNCLCs, but not Pax9. Moreover, cotransfection of Pax9 and Bmp4 plasmids in iNCLCs revealed a higher expression of Pax9 than when Pax9 plasmid was used alone. In contrast, exogenous Pax9 downregulated Bmp4 overexpression. Cotransfection of Pax9 and Bmp4 synergistically upregulated Dmp1 expression; however, Pax9 overexpression downregulated exogenous Bmp4-induced Dspp expression. Together, these findings suggest that an interaction between exogenous Pax9- and Bmp4-induced signaling modulated Dmp1 and Dspp expression. In conclusion, transfection of Pax9 and Bmp4 expression plasmids in iNCLCs induced gene expression associated with odontoblast differentiation, suggesting that iNCLCs differentiated into odontoblast-like cells. The iPS cell-derived odontoblast-like cells could be a useful cell source for tooth regeneration. SIGNIFICANCE: It has been reported that induced pluripotent stem (iPS) cells differentiate into odontogenic cells by administration of recombinant growth factors and coculture with odontogenic cells. Therefore, they can be potential cell sources for tooth regeneration. However, these previous methods still have problems, such as usage of other cell types, heterogeneity of differentiated cells, and tumorigenicity. In the present study, a novel method to differentiate iPS cells into odontoblast-like cells without tumorigenicity using gene transfection was established. It is an important advance in the establishment of efficient methods to generate homogeneous functional odontogenic cells derived from iPS cells.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/metabolism , Odontoblasts/metabolism , Odontogenesis/genetics , Paired Box Transcription Factors/metabolism , Animals , Bone Morphogenetic Protein 4/genetics , Cell Differentiation , Cell Engineering , Cell- and Tissue-Based Therapy , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Gene Expression Regulation , Induced Pluripotent Stem Cells/cytology , MSX1 Transcription Factor/genetics , MSX1 Transcription Factor/metabolism , Mice , Neural Stem Cells/cytology , Odontoblasts/cytology , PAX9 Transcription Factor , Paired Box Transcription Factors/genetics , Plasmids/chemistry , Plasmids/metabolism , Signal Transduction , Transfection
19.
J Bone Miner Res ; 29(5): 1244-57, 2014.
Article in English | MEDLINE | ID: mdl-24155087

ABSTRACT

Osteocytes produce various factors that mediate the onset of bone formation and resorption and play roles in maintaining bone homeostasis and remodeling in response to mechanical stimuli. One such factor, CCN2, is thought to play a significant role in osteocyte responses to mechanical stimuli, but its function in osteocytes is not well understood. Here, we showed that CCN2 induces apoptosis in osteocytes under compressive force loading. Compressive force increased CCN2 gene expression and production, and induced apoptosis in osteocytes. Application of exogenous CCN2 protein induced apoptosis, and a neutralizing CCN2 antibody blocked loading-induced apoptosis. We further examined how CCN2 induces loaded osteocyte apoptosis. In loaded osteocytes, extracellular signal-regulated kinase 1/2 (ERK1/2) was activated, and an ERK1/2 inhibitor blocked loading-induced apoptosis. Furthermore, application of exogenous CCN2 protein caused ERK1/2 activation, and the neutralizing CCN2 antibody inhibited loading-induced ERK1/2 activation. Therefore, this study demonstrated for the first time to our knowledge that enhanced production of CCN2 in osteocytes under compressive force loading induces apoptosis through activation of ERK1/2 pathway.


Subject(s)
Apoptosis/physiology , Compressive Strength , Connective Tissue Growth Factor/metabolism , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase 3/metabolism , Osteocytes/metabolism , Animals , Chick Embryo , Connective Tissue Growth Factor/genetics , Enzyme Activation/physiology , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinase 3/genetics , Osteocytes/cytology
20.
Am J Orthod Dentofacial Orthop ; 144(3): 441-54, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23992817

ABSTRACT

Patients with a dentofacial skeletal deformity have not only esthetic and morphologic problems related to facial proportions and dentition, but also problems of stomatognathic functions. Therefore, in addition to morphologic analysis, functional analysis is important for the diagnosis and evaluation of treatment in these patients. However, no reports have described longitudinal simultaneous evaluations of stomatognathic functions, and the comprehensive effects of surgical orthodontics on the stomatognathic functions are unclear. A patient was diagnosed as having a skeletal Class III jaw-base relationship, mandibular asymmetry, unilateral crossbite, asymmetric stomatognathic functions, and a temporomandibular disorder. She was treated with a combination of surgery and orthodontic therapy. As a result, facial proportions and occlusion improved; in particular, asymmetric stomatognathic functions, including masticatory muscle activity, condylar movement, and occlusal force, became symmetric between the left and right sides. Moreover, after 2 years of retention, the activity of the masticatory muscles and the values of occlusal force and occlusal contact area exceeded those at pretreatment. These results suggest that improvement of asymmetric stomatognathic functions can be achieved by correction of dentofacial morphology by surgical orthodontic treatment in patients with mandibular asymmetry.


Subject(s)
Facial Asymmetry/etiology , Malocclusion, Angle Class III/complications , Malocclusion, Angle Class III/surgery , Orthognathic Surgical Procedures , Adolescent , Bite Force , Cephalometry , Esthetics, Dental , Facial Asymmetry/surgery , Facial Asymmetry/therapy , Female , Humans , Malocclusion, Angle Class III/therapy , Masticatory Muscles/physiopathology , Temporomandibular Joint Disc/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...