Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(8): e0272345, 2022.
Article in English | MEDLINE | ID: mdl-36001538

ABSTRACT

Following the 2010 Deepwater Horizon disaster and subsequent unusual mortality event, adverse health impacts have been reported in bottlenose dolphins in Barataria Bay, LA including impaired stress response and reproductive, pulmonary, cardiac, and immune function. These conditions were primarily diagnosed through hands-on veterinary examinations and analysis of standard diagnostic panels. In human and veterinary medicine, gene expression profiling has been used to identify molecular mechanisms underlying toxic responses and disease states. Identification of molecular markers of exposure or disease may enable earlier detection of health effects or allow for health evaluation when the use of specialized methodologies is not feasible. To date this powerful tool has not been applied to augment the veterinary data collected concurrently during dolphin health assessments. This study examined transcriptomic profiles of blood from 76 dolphins sampled in health assessments during 2013-2018 in the waters near Barataria Bay, LA and Sarasota Bay, FL. Gene expression was analyzed in conjunction with the substantial suite of health data collected using principal component analysis, differential expression testing, over-representation analysis, and weighted gene co-expression network analysis. Broadly, transcript profiles of Barataria Bay dolphins indicated a shift in immune response, cytoskeletal alterations, and mitochondrial dysfunction, most pronounced in dolphins likely exposed to Deepwater Horizon oiling. While gene expression profiles in Barataria Bay dolphins were altered compared to Sarasota Bay for all years, profiles from 2013 exhibited the greatest alteration in gene expression. Differentially expressed transcripts included genes involved in immunity, inflammation, reproductive failure, and lung or cardiac dysfunction, all of which have been documented in dolphins from Barataria Bay following the Deepwater Horizon oil spill. The genes and pathways identified in this study may, with additional research and validation, prove useful as molecular markers of exposure or disease to assist wildlife veterinarians in evaluating the health of dolphins and other cetaceans.


Subject(s)
Bottle-Nosed Dolphin , Common Dolphins , Petroleum Pollution , Animals , Bottle-Nosed Dolphin/genetics , Bottle-Nosed Dolphin/metabolism , Gene Expression Profiling/veterinary , Gulf of Mexico , Humans , Petroleum Pollution/adverse effects
2.
Conserv Biol ; 36(4): e13878, 2022 08.
Article in English | MEDLINE | ID: mdl-34918835

ABSTRACT

The 2010 Deepwater Horizon (DWH) oil spill exposed common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana to heavy oiling that caused increased mortality and chronic disease and impaired reproduction in surviving dolphins. We conducted photographic surveys and veterinary assessments in the decade following the spill. We assigned a prognostic score (good, fair, guarded, poor, or grave) for each dolphin to provide a single integrated indicator of overall health, and we examined temporal trends in prognostic scores. We used expert elicitation to quantify the implications of trends for the proportion of the dolphins that would recover within their lifetime. We integrated expert elicitation, along with other new information, in a population dynamics model to predict the effects of observed health trends on demography. We compared the resulting population trajectory with that predicted under baseline (no spill) conditions. Disease conditions persisted and have recently worsened in dolphins that were presumably exposed to DWH oil: 78% of those assessed in 2018 had a guarded, poor, or grave prognosis. Dolphins born after the spill were in better health. We estimated that the population declined by 45% (95% CI 14-74) relative to baseline and will take 35 years (95% CI 18-67) to recover to 95% of baseline numbers. The sum of annual differences between baseline and injured population sizes (i.e., the lost cetacean years) was 30,993 (95% CI 6607-94,148). The population is currently at a minimum point in its recovery trajectory and is vulnerable to emerging threats, including planned ecosystem restoration efforts that are likely to be detrimental to the dolphins' survival. Our modeling framework demonstrates an approach for integrating different sources and types of data, highlights the utility of expert elicitation for indeterminable input parameters, and emphasizes the importance of considering and monitoring long-term health of long-lived species subject to environmental disasters. Article impact statement: Oil spills can have long-term consequences for the health of long-lived species; thus, effective restoration and monitoring are needed.


El derrame de petróleo Deepwater Horizon (DWH) en 2010 expuso gravemente a este hidrocarburo a los delfines (Tursiops truncatus) de la Bahía Barataria, Luisiana, causando un incremento en la mortalidad y en las enfermedades crónicas, y deteriorando la reproducción de los delfines sobrevivientes. Realizamos censos fotográficos y evaluaciones veterinarias durante la década posterior al derrame. Asignamos un puntaje pronóstico (bueno, favorable, moderado, malo, o grave) a cada delfín para proporcionar un indicador integrado único de la salud en general. También examinamos las tendencias temporales de estos puntajes. Usamos información de expertos para cuantificar las implicaciones de las tendencias para la proporción de delfines que se recuperaría dentro de su periodo de vida. Integramos esta información, junto con información nueva, a un modelo de dinámica poblacional para predecir los efectos sobre la demografía de las tendencias observadas en la salud. Comparamos la trayectoria poblacional resultante con aquella pronosticada bajo condiciones de línea base (sin derrame). Las condiciones de enfermedad persistieron y recientemente han empeorado en los delfines que supuestamente estuvieron expuestos al petróleo de DWH: 78% de aquellos evaluados en 2018 tuvieron un pronóstico moderado, malo o grave. Los delfines que nacieron después del derrame contaron con mejor salud. Estimamos que la población declinó en un 45% (95% CI 14-74) relativo a la línea base y tardará 35 años (95% CI 18-67) en recuperar el 95% de los números de línea base. La suma de las diferencias anuales entre el tamaño poblacional de línea base y el dañado (es decir, los años cetáceos perdidos) fue de 30,993 (95% CI 6,607-94,148). La población actualmente está en un punto mínimo de su trayectoria de recuperación y es vulnerable a las amenazas emergentes, incluyendo los esfuerzos de restauración ambiental planeada que probablemente sean nocivos para la supervivencia de los delfines. Nuestro marco de modelado demuestra una estrategia para la integración de diferentes fuentes y tipos de datos, resalta la utilidad de la información de expertos para los parámetros de aportación indeterminable, y enfatiza la importancia de la consideración y el monitoreo de la salud a largo plazo de las especies longevas sujetas a los desastres ambientales. Modelado de los Efectos Poblacionales del Derrame de Petróleo Deepwater Horizon sobre Especies Longevas.


Subject(s)
Bottle-Nosed Dolphin , Petroleum Pollution , Animals , Conservation of Natural Resources , Ecosystem , Louisiana , Petroleum Pollution/adverse effects , Reproduction
3.
PLoS One ; 16(12): e0261112, 2021.
Article in English | MEDLINE | ID: mdl-34905585

ABSTRACT

The Deepwater Horizon (DWH) oil spill profoundly impacted the health of bottlenose dolphins (Tursiops truncatus) in Barataria Bay, LA (BB). To comprehensively assess the cardiac health of dolphins living within the DWH oil spill footprint, techniques for in-water cardiac evaluation were refined with dolphins cared for by the U.S. Navy Marine Mammal Program in 2018 and applied to free-ranging bottlenose dolphins in BB (n = 34) and Sarasota Bay, Florida (SB) (n = 19), a non-oiled reference population. Cardiac auscultation detected systolic murmurs in the majority of dolphins from both sites (88% BB, 89% SB) and echocardiography showed most of the murmurs were innocent flow murmurs attributed to elevated blood flow velocity [1]. Telemetric six-lead electrocardiography detected arrhythmias in BB dolphins (43%) and SB dolphins (31%), all of which were considered low to moderate risk for adverse cardiac events. Echocardiography showed BB dolphins had thinner left ventricular walls, with significant differences in intraventricular septum thickness at the end of diastole (p = 0.002), and left ventricular posterior wall thickness at the end of diastole (p = 0.033). BB dolphins also had smaller left atrial size (p = 0.004), higher prevalence of tricuspid valve prolapse (p = 0.003), higher prevalence of tricuspid valve thickening (p = 0.033), and higher prevalence of aortic valve thickening (p = 0.008). Two dolphins in BB were diagnosed with pulmonary arterial hypertension based on Doppler echocardiography-derived estimates and supporting echocardiographic findings. Histopathology of dolphins who stranded within the DWH oil spill footprint showed a significantly higher prevalence of myocardial fibrosis (p = 0.003), regardless of age, compared to dolphins outside the oil spill footprint. In conclusion, there were substantial cardiac abnormalities identified in BB dolphins which may be related to DWH oil exposure, however, future work is needed to rule out other hypotheses and further elucidate the connection between oil exposure, pulmonary disease, and the observed cardiac abnormalities.


Subject(s)
Bottle-Nosed Dolphin , Heart Injuries/veterinary , Petroleum Pollution/adverse effects , Animals , Bottle-Nosed Dolphin/abnormalities , Bottle-Nosed Dolphin/physiology , Echocardiography/veterinary , Electrocardiography/veterinary , Fibrosis/diagnostic imaging , Fibrosis/veterinary , Heart/diagnostic imaging , Heart/physiology , Heart Injuries/diagnostic imaging , Hypertension/veterinary
4.
PLoS One ; 16(9): e0258031, 2021.
Article in English | MEDLINE | ID: mdl-34591903

ABSTRACT

More than 2,000 common bottlenose dolphins (Tursiops truncatus) inhabit the Barataria Bay Estuarine System in Louisiana, USA, a highly productive estuary with variable salinity driven by natural and man-made processes. It was unclear whether dolphins that are long-term residents to specific areas within the basin move in response to fluctuations in salinity, which at times can decline to 0 parts per thousand in portions of the basin. In June 2017, we conducted health assessments and deployed satellite telemetry tags on dolphins in the northern portions of the Barataria Bay Estuarine System Stock area (9 females; 4 males). We analyzed their fine-scale movements relative to modeled salinity trends compared to dolphins tagged near the barrier islands (higher salinity environments) from 2011 to 2017 (37 females; 21 males). Even though we observed different movement patterns among individual dolphins, we found no evidence that tagged dolphins moved coincident with changes in salinity. One tagged dolphin spent at least 35 consecutive days, and 75 days in total, in salinity under 5 parts per thousand. Health assessments took place early in a seasonal period of decreased salinity. Nonetheless, we found an increased prevalence of skin lesions, as well as abnormalities in serum biochemical markers and urine:serum osmolality ratios for dolphins sampled in lower salinity areas. This study provides essential information on the likely behavioral responses of dolphins to changes in salinity (e.g., severe storms or from the proposed Mid-Barataria Sediment Diversion project) and on physiological markers to inform the timing and severity of impacts from low salinity exposure.


Subject(s)
Animal Distribution/physiology , Bottle-Nosed Dolphin/physiology , Salinity , Animals , Environmental Monitoring , Estuaries , Louisiana
5.
J Toxicol Environ Health B Crit Rev ; 24(8): 355-394, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34542016

ABSTRACT

In the wake of the Deepwater Horizon (DWH) oil spill, a number of government agencies, academic institutions, consultants, and nonprofit organizations conducted lab- and field-based research to understand the toxic effects of the oil. Lab testing was performed with a variety of fish, birds, turtles, and vertebrate cell lines (as well as invertebrates); field biologists conducted observations on fish, birds, turtles, and marine mammals; and epidemiologists carried out observational studies in humans. Eight years after the spill, scientists and resource managers held a workshop to summarize the similarities and differences in the effects of DWH oil on vertebrate taxa and to identify remaining gaps in our understanding of oil toxicity in wildlife and humans, building upon the cross-taxonomic synthesis initiated during the Natural Resource Damage Assessment. Across the studies, consistency was found in the types of toxic response observed in the different organisms. Impairment of stress responses and adrenal gland function, cardiotoxicity, immune system dysfunction, disruption of blood cells and their function, effects on locomotion, and oxidative damage were observed across taxa. This consistency suggests conservation in the mechanisms of action and disease pathogenesis. From a toxicological perspective, a logical progression of impacts was noted: from molecular and cellular effects that manifest as organ dysfunction, to systemic effects that compromise fitness, growth, reproductive potential, and survival. From a clinical perspective, adverse health effects from DWH oil spill exposure formed a suite of signs/symptomatic responses that at the highest doses/concentrations resulted in multi-organ system failure.


Subject(s)
Environmental Exposure/adverse effects , Petroleum Pollution/adverse effects , Water Pollutants, Chemical/toxicity , Animals , Birds , Environmental Monitoring/methods , Fishes , Humans , Multiple Organ Failure/etiology , Petroleum/toxicity , Turtles , Vertebrates
6.
J Anim Ecol ; 90(5): 1191-1204, 2021 05.
Article in English | MEDLINE | ID: mdl-33608907

ABSTRACT

Dolphin morbillivirus (DMV) is a virulent pathogen that causes high mortality outbreaks in delphinids globally and is spread via contact among individuals. Broadly ranging nearshore and open-ocean delphinids are likely reservoir populations that transmit DMV to estuarine populations. We assessed the seroprevalence of DMV antibodies and determined the habitat use of common bottlenose dolphins, Tursiops truncatus truncatus, from two estuarine sites, Barataria Bay and Mississippi Sound, in the northern Gulf of Mexico. We predicted that risk to DMV exposure in estuarine dolphins is driven by spatial overlap in habitat use with reservoir populations. Serum was collected from live-captured dolphins and tested for DMV antibodies. Habitat use of sampled individuals was determined by analysing satellite-tracked movements and stable isotope values. DMV seroprevalences were high among dolphins at Barataria Bay (37%) and Mississippi Sound (44%), but varied differently within sites. Ranging patterns of Barataria Bay dolphins were categorized into two groups: Interior and Island-associated. DMV seroprevalences were absent in Interior dolphins (0%) but high in Island-associated dolphins (45%). Ranging patterns of Mississippi Sound dolphins were categorized into three groups: Interior, Island-east and Island-west. DMV seroprevalences were detected across Mississippi Sound (Interior: 60%; Island-east: 20%; and Island-west: 43%). At both sites, dolphins in habitats with greater marine influence had enriched δ13 C values, and Barataria Bay dolphins with positive DMV titres had carbon isotope values indicative of marine habitats. Positive titres for DMV antibodies were more common in the lower versus upper parts of Barataria Bay but evenly distributed across Mississippi Sound. A dolphin's risk of exposure to DMV is influenced by how individual ranging patterns interact with environmental geography. Barataria Bay's partially enclosed geography likely limits the nearshore or open-ocean delphinids that carry DMV from interacting with dolphins that use interior, estuarine habitats, decreasing their exposure to DMV. Mississippi Sound's relatively open geography allows for greater spatial overlap and mixing among estuarine, nearshore and/or open-ocean cetaceans. The spread of DMV, and likely other diseases, is affected by the combination of individual movements, habitat use and the environment.


Subject(s)
Bottle-Nosed Dolphin , Common Dolphins , Morbillivirus , Animals , Ecosystem , Gulf of Mexico , Seroepidemiologic Studies
7.
Front Vet Sci ; 7: 570055, 2020.
Article in English | MEDLINE | ID: mdl-33240948

ABSTRACT

Cardiac auscultation is an important, albeit underutilized tool in aquatic animal medicine due to the many challenges associated with in-water examinations. The aims of this prospective study were to (1) establish an efficient and repeatable in-water cardiac auscultation technique in bottlenose dolphins (Tursiops truncatus), (2) describe the presence and characterization of heart murmurs detected in free-ranging and managed dolphins, and (3) characterize heart murmur etiology through echocardiography in free-ranging dolphins. For technique development, 65 dolphins cared for by the Navy Marine Mammal Program (Navy) were auscultated. The techniques were then applied to two free-ranging dolphin populations during capture-release health assessments: Sarasota Bay, Florida (SB), a reference population, and Barataria Bay, LA (BB), a well-studied population of dolphins impacted by the Deepwater Horizon oil spill. Systolic heart murmurs were detected at a frequent and similar prevalence in all dolphin populations examined (Navy 92%, SB 89%, and BB 88%), and characterized as fixed or dynamic. In all three populations, sternal cranial and left cranial were the most common locations for murmur point of maximal intensity (PMI). An in-water transthoracic echocardiogram technique was refined on a subset of Navy dolphins, and full echocardiographic exams were performed on 17 SB dolphins and 29 BB dolphins, of which, 40 had murmurs. Spectral Doppler was used to measure flow velocities across the outflow tracts, and almost all dolphins with audible murmurs had peak outflow velocities ≥1.6 m/s (95%, 38/40); three dolphins also had medium mitral regurgitation which could be the source of their murmurs. The presence of audible murmurs in most of the free-ranging dolphins (88%) was attributed to high velocity blood flow as seen on echocardiography, similar to a phenomenon described in other athletic species. These innocent murmurs were generally characterized as Grade I-III systolic murmurs with PMI in the left or sternal cranial region. This study is the first to describe an efficient technique for in-water dolphin cardiac auscultation, and to present evidence that heart murmurs are common in bottlenose dolphins.

8.
PLoS One ; 15(11): e0242273, 2020.
Article in English | MEDLINE | ID: mdl-33216762

ABSTRACT

Age is an important parameter to better understand wildlife populations, and is especially relevant for interpreting data for fecundity, health, and survival assessments. Estimating ages for marine mammals presents a particular challenge due to the environment they inhabit: accessibility is limited and, when temporarily restrained for assessment, the window of opportunity for data collection is relatively short. For wild dolphins, researchers have described a variety of age-determination techniques, but the gold-standard relies upon photo-identification to establish individual observational life histories from birth. However, there are few populations with such long-term data sets, therefore alternative techniques for age estimation are required for individual animals without a known birth period. While there are a variety of methods to estimate ages, each involves some combination of drawbacks, including a lack of precision across all ages, weeks-to-months of analysis time, logistical concerns for field applications, and/or novel techniques still in early development and validation. Here, we describe a non-invasive field technique to determine the age of small cetaceans using periapical dental radiography and subsequent measurement of pulp:tooth area ratios. The technique has been successfully applied for bottlenose dolphins briefly restrained during capture-release heath assessments in various locations in the Gulf of Mexico. Based on our comparisons of dental radiography data to life history ages, the pulp:tooth area ratio method can reliably provide same-day estimates for ages of dolphins up to about 10 years old.


Subject(s)
Age Determination by Teeth/methods , Dental Pulp/diagnostic imaging , Tooth/diagnostic imaging , Age Determination by Teeth/veterinary , Animals , Animals, Wild , Bottle-Nosed Dolphin , Dental Pulp/physiology , Female , Male , Radiography, Dental , Tooth/physiology
9.
Environ Toxicol Chem ; 38(1): 198-209, 2019 01.
Article in English | MEDLINE | ID: mdl-30298944

ABSTRACT

We investigated the olfactory toxicity of copper (Cu) to rainbow trout in low-hardness (27 mg/L as CaCO3 ) water formulated in the laboratory over a 120-h period using a flow-through design. The fish's response to an alarm cue (e.g., reduction in activity) was recorded to determine the exposure concentrations and durations that inhibited olfactory detection of the cue after 3, 24, 48, and 96 h of Cu exposure and after 24 h of clean water recovery following the 96-h exposure period. Exposures were conducted with a range of Cu concentrations from 0.13 (control) to 7.14 µg Cu/L (dissolved Cu). We observed a dose-dependent response in olfactory inhibition with a 20% reduction in the probability of responding to the alarm cue, relative to controls, at 2.7 and 2.4 µg Cu/L after 24 or 96 h of exposure, respectively. Olfactory inhibition manifested between 3 and 24 h of exposure. Our 24- and 96-h 20% olfactory inhibition estimates fell between the criteria derived using the biotic ligand model (BLM; criterion maximum concentration [CMC] and criterion continuous concentration [CCC] values were 0.63 and 0.39 µg Cu/L, respectively) and water hardness-based criteria (CMC and CCC values were 3.9 and 2.9 µg Cu/L, respectively). Therefore, the hardness-based criteria do not appear to be protective and the BLM-derived criteria do appear to be protective against Cu-induced olfactory inhibition given our test water chemistry. Neither the hardness-based criteria nor the BLM-derived criteria appear to be protective against our estimated Cu behavioral avoidance response concentrations at 24- and 96-h exposures (0.54 and 0.50 µg Cu/L, respectively). Environ Toxicol Chem 2019;38:198-209. © 2018 SETAC.


Subject(s)
Bays , Copper/toxicity , Olfactory Bulb/drug effects , Toxicity Tests , Water Pollutants, Chemical/toxicity , Animals , Behavior, Animal/drug effects , Biological Assay , Environmental Exposure/analysis , Hardness , Oncorhynchus mykiss/physiology , Probability , Video Recording , Water Quality
10.
Aquat Toxicol ; 204: 91-99, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30223188

ABSTRACT

This study examined the impacts of Macondo oil from the Deepwater Horizon oil spill, both alone and in conjunction with exposure to the known fish pathogen Vibrio anguillarum, on the expression of five immune-related gene transcripts of red snapper (il8, il10, tnfa, il1b, and igm). In order to elucidate this impact, six different test conditions were used: one Control group (No oil/No pathogen), one Low oil/No pathogen group (tPAH50 = 0.563 µg/L), one High oil/No pathogen group (tPAH50 = 17.084 µg/L, one No oil/Pathogen group, one Low oil/Pathogen group (tPAH50 = 0.736 µg/L), and one High oil/Pathogen group (tPAH50 = 15.799 µg/L). Fish were exposed to their respective oil concentrations for one week. On day 7 of the experiment, all fish were placed into new tanks (with or without V. anguillarum) for one hour. At three time points (day 8, day 10, and day 17), fish organs were harvested and placed into RNAlater, and qPCR was run for examination of the above specific immune genes as well as cyp1a1. Our results suggest that cyp1a1 transcripts were upregulated in oil-exposed groups throughout the experiment, confirming oil exposure, and that all five immune gene transcripts were upregulated on day 8, but were generally downregulated or showed no differences from controls on days 10 and 17. Finally, both oil and pathogen exposure had impacts on growth.


Subject(s)
Perciformes/growth & development , Perciformes/immunology , Petroleum Pollution , Vibrio/physiology , Animals , Body Weight/drug effects , Cytochrome P-450 CYP1A1/metabolism , Cytokines/genetics , Cytokines/metabolism , Environmental Exposure/analysis , Gene Expression Regulation/drug effects , Liver/drug effects , Liver/metabolism , Perciformes/anatomy & histology , Perciformes/microbiology , Polycyclic Aromatic Hydrocarbons/toxicity , Spleen/drug effects , Spleen/metabolism , Water/chemistry , Water Pollutants, Chemical/toxicity
11.
Chemosphere ; 213: 205-214, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30223125

ABSTRACT

The potential bioavailability of toxic chemicals from oil spills to water column organisms such as fish embryos may be influenced by physical dispersion along an energy gradient. For example, a surface slick with minimal wave action (low energy) could potentially produce different toxic effects from high energy situations such as pressurized discharge from a blown wellhead. Here we directly compared the toxicity of water accommodated fractions (WAFs) of oil prepared with low and high mixing energy (LEWAFs and HEWAFs, respectively) using surface oil samples collected during the 2010 Deepwater Horizon spill, and embryos of a representative nearshore species, red drum (Sciaenops ocellatus). Biological effects of each WAF type was quantified with several functional and morphological indices of developmental cardiotoxicity, providing additional insight into species-specific responses to oil exposure. Although the two WAF preparations yielded different profiles of polycyclic aromatic hydrocarbons (PAHs), cardiotoxic phenotypes were essentially identical. Based on benchmark thresholds for both morphological and functional cardiotoxicity, in general LEWAFs had lower thresholds for these phenotypes than HEWAFs based on total PAH measures. However, HEWAF and LEWAF toxicity thresholds were more similar when calculated based on estimates of dissolved PAHs only. Differences in thresholds were attributable to the weathering state of the oil samples.


Subject(s)
Aquatic Organisms/chemistry , Cardiotoxicity/etiology , Petroleum/adverse effects , Polycyclic Aromatic Hydrocarbons/chemistry , Water Pollutants, Chemical/chemistry , Water/chemistry , Animals , Fishes , Water Pollutants, Chemical/analysis , Weather
12.
PLoS Negl Trop Dis ; 12(6): e0006524, 2018 06.
Article in English | MEDLINE | ID: mdl-29927940

ABSTRACT

Zika virus (ZIKV) has emerged since 2013 as a significant global human health threat following outbreaks in the Pacific Islands and rapid spread throughout South and Central America. Severe congenital and neurological sequelae have been linked to ZIKV infections. Assessing the ability of common mosquito species to transmit ZIKV and characterizing variation in mosquito transmission of different ZIKV strains is important for estimating regional outbreak potential and for prioritizing local mosquito control strategies for Aedes and Culex species. In this study, we evaluated the laboratory vector competence of Aedes aegypti, Culex quinquefasciatus, and Culex tarsalis that originated in areas of California where ZIKV cases in travelers since 2015 were frequent. We compared infection, dissemination, and transmission rates by measuring ZIKV RNA levels in cohorts of mosquitoes that ingested blood meals from type I interferon-deficient mice infected with either a Puerto Rican ZIKV strain from 2015 (PR15), a Brazilian ZIKV strain from 2015 (BR15), or an ancestral Asian-lineage Malaysian ZIKV strain from 1966 (MA66). With PR15, Cx. quinquefasciatus was refractory to infection (0%, N = 42) and Cx. tarsalis was infected at 4% (N = 46). No ZIKV RNA was detected in saliva from either Culex species 14 or 21 days post feeding (dpf). In contrast, Ae. aegypti developed infection rates of 85% (PR15; N = 46), 90% (BR15; N = 20), and 81% (MA66; N = 85) 14 or 15 dpf. Although MA66-infected Ae. aegypti showed higher levels of ZIKV RNA in mosquito bodies and legs, transmission rates were not significantly different across virus strains (P = 0.13, Fisher's exact test). To confirm infectivity and measure the transmitted ZIKV dose, we enumerated infectious ZIKV in Ae. aegypti saliva using Vero cell plaque assays. The expectorated plaque forming units PFU varied by viral strain: MA66-infected expectorated 13±4 PFU (mean±SE, N = 13) compared to 29±6 PFU for PR15-infected (N = 13) and 35±8 PFU for BR15-infected (N = 6; ANOVA, df = 2, F = 3.8, P = 0.035). These laboratory vector competence results support an emerging consensus that Cx. tarsalis and Cx. quinquefasciatus are not vectors of ZIKV. These results also indicate that Ae. aegypti from California are efficient laboratory vectors of ancestral and contemporary Asian lineage ZIKV.


Subject(s)
Aedes/virology , Culex/virology , Mosquito Vectors/virology , RNA, Viral/isolation & purification , Zika Virus Infection/transmission , Zika Virus/physiology , Animals , California/epidemiology , Chlorocebus aethiops , Humans , Interferon Type I/deficiency , Interferon Type I/immunology , Mice , Mosquito Control , Saliva/virology , Vero Cells , Zika Virus/genetics , Zika Virus Infection/epidemiology , Zika Virus Infection/virology
13.
Environ Toxicol Chem ; 37(6): 1679-1687, 2018 06.
Article in English | MEDLINE | ID: mdl-29473712

ABSTRACT

Millions of barrels of oil were released into the Gulf of Mexico following the 2010 explosion of the Deepwater Horizon oil rig. Polycyclic aromatic hydrocarbons (PAHs) are toxic components of crude oil, which may become more toxic in the presence of ultraviolet (UV) radiation, a phenomenon known as photo-induced toxicity. The Deepwater Horizon spill impacted offshore and estuarine sites, where biota may be co-exposed to UV and PAHs. Penetration of UV into the water column is affected by site-specific factors. Therefore, measurements and/or estimations of UV are necessary when one is assessing the risk to biota posed by photo-induced toxicity. We describe how estimates of incident UV were determined for the area impacted by the Deepwater Horizon oil spill, using monitoring data from radiometers near the spill, in conjunction with reference spectra characterizing the composition of solar radiation. Furthermore, we provide UV attenuation coefficients for both near- and offshore sites in the Gulf of Mexico. These estimates are specific to the time and location of the spill, and fall within the range of intensities utilized during photo-induced toxicity tests performed in support of the Deepwater Horizon Natural Resource Damage Assessment (NRDA). These data further validate the methodologies and findings of phototoxicity tests included in the Deepwater Horizon NRDA, while underscoring the importance of considering UV exposure when assessing possible risks following oil spills. Environ Toxicol Chem 2018;37:1679-1687. © 2018 SETAC.


Subject(s)
Petroleum Pollution , Ultraviolet Rays , Environmental Monitoring/methods , Gulf of Mexico , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Seawater , Ultraviolet Rays/adverse effects , Water Pollutants, Chemical/toxicity
14.
Vet Clin Pathol ; 47(1): 22-28, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29341194

ABSTRACT

BACKGROUND: The Deepwater Horizon (DWH) oil spill in 2010 released millions of barrels of crude oil into the northern Gulf of Mexico, exposing numerous species of animals to the toxic components of oil. A comprehensive assessment of morbidity and mortality caused by DWH oil exposure was undertaken by the DWH Natural Resource Damage Trustees to characterize ecosystem damages. OBJECTIVES: This study aimed to characterize normal hematologic RIs in red drum fish with blood cell descriptions, and to demonstrate the importance of identifying and removing outliers when generating RI. METHODS: Two years after the oil spill, 57 adult, red drum fish of mixed sexes were caught along the eastern Louisiana coastline. Eight different sites were chosen to catch the fish; 6 sites were contaminated with oil, and 2 sites were not contaminated at the time of the oil spill. Hematologic RIs were generated from heparinized whole blood samples of healthy red drum as determined by gross examination and histopathologic examination. Two methods were used to detect hematologic effects likely caused by oil contamination. RESULTS: Red drum PCVs (RI 42-62%) were higher than previously reported in cold water and bottom-dwelling fish species, while absolute WBC counts (RI 2.9-8.7  × 109 /L) were comparable to WBC counts previously reported in other fish species with heterophil and lymphocyte absolute concentrations frequently being equivalent. Anemic animals (PCV<42%) were only identified in oil-contaminated sites. CONCLUSION: RIs in many wild fish species are lacking, and therefore, this study provides valuable baseline data on healthy red drum fish. The outliers assessed using ASVCP RI guidelines can provide valuable clinical information regarding individuals in population health assessments, which may be more sensitive for the detection of abnormalities than for population statistics comparing the mean. The importance of removing outliers and rerunning RI statistics is highlighted by this field example.


Subject(s)
Fishes/blood , Hematology , Reference Values , Animals , Female , Male , Petroleum Pollution
15.
Ecotoxicol Environ Saf ; 148: 473-479, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29112918

ABSTRACT

The BP-contracted Deepwater Horizon Macondo well blowout occurred on 20 April 2010 and lasted nearly three months. The well released millions of barrels of crude oil into the northern Gulf of Mexico, causing extensive impacts on pelagic, benthic, and estuarine fish species. The bay anchovy (Anchoa mitchilli) is an important zooplanktivore in the Gulf, serving as an ecological link between lower trophic levels and pelagic predatory fish species. Bay anchovy spawn from May through November in shallow inshore and estuarine waters throughout the Gulf. Because their buoyant embryos are a dominant part of the inshore ichthyoplankton throughout the summer, it is likely bay anchovy embryos encountered oil in coastal estuaries during the summer and fall of 2010. Bay anchovy embryos were exposed to a range of concentrations of two field-collected Deepwater Horizon oils as high-energy and low-energy water accommodated fractions (HEWAFs and LEWAFs, respectively) for 48h. The median lethal concentrations (LC50) were lower in exposures with the more weathered oil (HEWAF, 1.48µg/L TPAH50; LEWAF, 1.58µg/L TPAH50) compared to the less weathered oil (HEWAF, 3.87µg/L TPAH50; LEWAF, 4.28µg/L TPAH50). To measure delayed mortality and life stage sensitivity between embryos and larvae, an additional 24h acute HEWAF exposure using the more weathered oil was run followed by a 24h grow-out period. Here the LC50 was 9.71µg/L TPAH50 after the grow-out phase, suggesting a toxic effect of oil at the embryonic or hatching stage. We also found that exposures prepared with the more weathered Slick B oil produced lower LC50 values compared to the exposures prepared with Slick A oil. Our results demonstrate that even relatively acute environmental exposure times can have a detrimental effect on bay anchovy embryos.


Subject(s)
Fishes/embryology , Petroleum Pollution/adverse effects , Water Pollutants, Chemical/toxicity , Animals , Embryo, Nonmammalian/drug effects , Gulf of Mexico , Larva/drug effects , Lethal Dose 50 , Petroleum/toxicity , Seasons
16.
PLoS One ; 12(5): e0176559, 2017.
Article in English | MEDLINE | ID: mdl-28464028

ABSTRACT

Exposure to crude oil or its individual constituents can have detrimental impacts on fish species, including impairment of the immune response. Increased observations of skin lesions in northern Gulf of Mexico fish during the 2010 Deepwater Horizon oil spill indicated the possibility of oil-induced immunocompromisation resulting in bacterial or viral infection. This study used a full factorial design of oil exposure and bacterial challenge to examine how oil exposure impairs southern flounder (Paralichthys lethostigma) immune function and increases susceptibility to the bacteria Vibrio anguillarum, a causative agent of vibriosis. Fish exposed to oil prior to bacterial challenge exhibited 94.4% mortality within 48 hours of bacterial exposure. Flounder challenged with V. anguillarum without prior oil exposure had <10% mortality. Exposure resulted in taxonomically distinct gill and intestine bacterial communities. Mortality strongly correlated with V. anguillarum levels, where it comprised a significantly higher percentage of the microbiome in Oil/Pathogen challenged fish and was nearly non-existent in the No Oil/Pathogen challenged fish bacterial community. Elevated V. anguillarum levels were a direct result of oil exposure-induced immunosuppression. Oil-exposure reduced expression of immunoglobulin M, the major systemic fish antibody, and resulted in an overall downregulation in transcriptome response, particularly in genes related to immune function, response to stimulus and hemostasis. Ultimately, sediment-borne oil exposure impairs immune function, leading to increased incidences of bacterial infections. This type of sediment-borne exposure may result in long-term marine ecosystem effects, as oil-bound sediment in the northern Gulf of Mexico will likely remain a contamination source for years to come.


Subject(s)
Fish Diseases/microbiology , Flounder/microbiology , Petroleum/adverse effects , Animals , Fish Diseases/immunology , Flounder/immunology , Immunity/drug effects , Vibrio , Vibrio Infections/immunology , Vibrio Infections/veterinary
17.
Environ Toxicol Chem ; 36(3): 780-785, 2017 03.
Article in English | MEDLINE | ID: mdl-27868239

ABSTRACT

The 2010 Deepwater Horizon oil spill resulted in the accidental release of millions of barrels of crude oil into the Gulf of Mexico. Photo-induced toxicity following co-exposure to ultraviolet (UV) radiation is 1 mechanism by which polycyclic aromatic hydrocarbons (PAHs) from oil spills may exert toxicity. Red drum and speckled seatrout are both important fishery resources in the Gulf of Mexico. They spawn near-shore and produce positively buoyant embryos that hatch into larvae in approximately 24 h. The goal of the present study was to determine whether exposure to UV as natural sunlight enhances the toxicity of crude oil to early lifestage red drum and speckled seatrout. Larval fish were exposed to several dilutions of high-energy water-accommodated fractions (HEWAFs) from 2 different oils collected in the field under chain of custody during the 2010 spill and 3 gradations of natural sunlight in a factorial design. Co-exposure to natural sunlight and oil significantly reduced larval survival compared with exposure to oil alone. Although both species were sensitive at PAH concentrations reported during the Deepwater Horizon spill, speckled seatrout demonstrated a greater sensitivity to photo-induced toxicity than red drum. These data demonstrate that even advanced weathering of slicks does not ameliorate the potential for photo-induced toxicity of oil to these species. Environ Toxicol Chem 2017;36:780-785. © 2016 SETAC.


Subject(s)
Larva/drug effects , Perciformes/growth & development , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Ultraviolet Rays , Water Pollutants, Chemical/toxicity , Animals , Fisheries , Gulf of Mexico , Larva/growth & development , Larva/radiation effects , Petroleum Pollution/analysis , Texas , Toxicity Tests , Weather
18.
Aquat Toxicol ; 165: 197-209, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26092636

ABSTRACT

Exposure to oiled sediments can negatively impact the health of fish species. Here, we examine the effects of chronic exposure of juvenile southern flounder, Paralichthys lethostigma, to a sediment-oil mixture. Oil:sediment mixtures are persistent over time and can become bioavailable following sediment perturbation or resuspension. Juvenile flounder were exposed for 32 days under controlled laboratory conditions to five concentrations of naturally weathered Macondo MC252 oil mixed into uncontaminated, field-collected sediments. The percent composition of individual polycyclic aromatic hydrocarbons (PAHs) of the weathered oil did not change after mixing with the sediment. Spiked exposure sediments contained 0.04-395mg/kg tPAH50 (sum of 50 individual PAH concentration measurements). Mortality increased with both exposure duration and concentration of sediment-associated PAHs, and flounder exposed to concentrations above 8mg/kg tPAH50 showed significantly reduced growth over the course of the experiment. Evident histopathologic changes were observed in liver and gill tissues of fish exposed to more than 8mg/kg tPAH50. All fish at these concentrations showed hepatic intravascular congestion, macrovesicular hepatic vacoulation, telangiectasia of secondary lamellae, and lamellar epithelial proliferation in gill tissues. Dose-dependent upregulation of Cyp1a expression in liver tissues was observed. Taxonomic analysis of gill and intestinal commensal bacterial assemblages showed that exposure to oiled sediments led to distinct shifts in commensal bacterial population structures. These data show that chronic exposure to environmentally-relevant concentrations of oiled sediments produces adverse effects in flounder at multiple biological levels.


Subject(s)
Environmental Exposure , Flounder/physiology , Geologic Sediments/chemistry , Gills/drug effects , Liver/drug effects , Microbiota/drug effects , Petroleum/toxicity , Animals , Petroleum Pollution , Water Pollutants, Chemical/toxicity
19.
Biopolymers ; 95(11): 772-84, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21560118

ABSTRACT

Epstein-Barr virus (EBV), a human γ-herpesvirus, establishes lifelong infection by targeting the adaptive immune system of the host through memory B cells. Although normally benign, EBV contributes to lymphoid malignancies and lymphoproliferative syndromes in immunocompromised individuals. The viral oncoprotein latent membrane protein 1 (LMP-1) is essential for B lymphocyte immortalization by EBV. The constitutive signaling activity of LMP-1 is dependent on homo-oligomerization of its six-spanning hydrophobic transmembrane domain (TMD). However, the mechanism driving LMP-1 intermolecular interaction is poorly understood. Here, we show that the fifth transmembrane helix (TM5) of LMP-1 strongly self-associates, forming a homotrimeric complex mediated by a polar residue embedded in the membrane, D150. Replacement of this aspartic acid residue with alanine disrupts TM5 self-association in detergent micelles and bacterial cell membranes. A full-length LMP-1 variant harboring the D150A substitution is deficient in NFκB activation, supporting the key role of the fifth transmembrane helix in constitutive activation of signaling by this oncoprotein.


Subject(s)
Biopolymers/metabolism , Peptides/metabolism , Viral Matrix Proteins/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites , Blotting, Western , Circular Dichroism , DNA Primers , Electrophoresis, Polyacrylamide Gel , Molecular Dynamics Simulation , Molecular Sequence Data , Point Mutation , Sequence Homology, Amino Acid , Signal Transduction , Ultracentrifugation , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...