Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Plant Cell Physiol ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597891

ABSTRACT

The centromere is an essential chromosome region where the kinetochore is formed to control equal chromosome distribution during cell division. The centromere-specific histone H3 variant CENH3 (also called CENP-A) is a prerequisite for the kinetochore formation. Since CENH3 evolves rapidly, associated factors, including histone chaperones mediating the deposition of CENH3 on the centromere, are thought to act through species-specific amino-acid sequences. The functions and interaction networks of CENH3 and histone chaperons have been well-characterized in animals and yeasts. However, molecular mechanisms involved in recognition and deposition of CENH3 are still unclear in plants. Here, we used a swapping strategy between domains of CENH3 of Arabidopsis thaliana and the liverwort Marchantia polymorpha to identify specific regions of CENH3 involved in targeting the centromeres and interacting with the general histone H3 chaperone, NASP (nuclear autoantigenic sperm protein). CENH3's LoopN-α1 region was necessary and sufficient for the centromere targeting in cooperation with the α2 region and was involved in interaction with NASP in cooperation with αN, suggesting a species-specific CENH3 recognition. In addition, by generating an Arabidopsis nasp knockout mutant in the background of a fully fertile GFP-CENH3/cenh3-1 line, we found that NASP was implicated for de novo CENH3 deposition after fertilization and thus for early embryo development. Our results imply that the NASP mediates the supply of CENH3 in the context of the rapidly evolving centromere identity in land plants.

2.
Plant Cell ; 35(4): 1222-1240, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36562145

ABSTRACT

Pollen tube attraction is a key event of sexual reproduction in flowering plants. In the ovule, two synergid cells neighboring the egg cell control pollen tube arrival via the active secretion of attractant peptides such as AtLURE1 and XIUQIU from the filiform apparatus (FA) facing toward the micropyle. Distinctive cell polarity together with longitudinal F-actin and microtubules are hallmarks of the synergid cell in various species, though the functions of these cellular structures are unclear. In this study, we used genetic and pharmacological approaches to indicate the roles of cytoskeletal components in FA formation and pollen tube guidance in Arabidopsis thaliana. Genetic inhibition of microtubule formation reduced invaginations of the plasma membrane but did not abolish micropylar AtLURE1.2 accumulation. By contrast, the expression of a dominant-negative form of ACTIN8 induced disorganization of the FA and loss of polar AtLURE1.2 distribution toward the FA. Interestingly, after pollen tube reception, F-actin became unclear for a few hours in the persistent synergid cell, which may be involved in pausing and resuming pollen tube attraction during early polytubey block. Our data suggest that F-actin plays a central role in maintaining cell polarity and in mediating male-female communication in the synergid cell.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Actins/genetics , Actins/metabolism , Pollen Tube/genetics , Pollen Tube/metabolism , Cell Membrane/metabolism , Ovule/genetics , Ovule/metabolism
3.
Int J Mol Sci ; 23(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35269862

ABSTRACT

Sexual reproduction between males and females of the same species is essential for species maintenance. Ovular micropylar guidance, the last step of pollen tube guidance in angiosperms, contributes to species-preferential reproduction. Previous studies using semi-in vivo attraction assays showed that species-preferential attractant peptides are secreted from the ovule through its micropyle. However, conventional semi-in vivo assays usually depend on transgenic pollen tubes expressing a fluorescent protein to determine whether the tubes are attracted to the ovule to precisely penetrate the micropyle. Here, we found that fluorescein diacetate (FDA) staining was suitable for evaluating the micropylar guidance rate of non-transgenic pollen tubes in semi-in vivo conditions. Micropylar guidance was quantified for ovules and pollen tubes of Arabidopsis thaliana and Arabidopsis lyrata by combining FDA staining with modified semi-in vivo assays. Our results using the simple staining method showed that the ovules of each species secrete species-preferential attractants, and that pollen tubes respond more strongly to attractants of their own species compared with those of closely related species. LURE-type CRP810 attractant peptides were shown to be responsible for micropylar attraction of A. thaliana in the semi-in vivo assay. The POLLEN-SPECIFIC RECEPTOR-LIKE KINASE 6 (PRK6) receptor for LURE1, as well as an unidentified receptor for other LURE-type attractants, are involved in the species-preferential response of these two Arabidopsis species.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Fluoresceins , Peptides/metabolism , Pollen Tube/metabolism , Staining and Labeling
4.
Peptides ; 142: 170572, 2021 08.
Article in English | MEDLINE | ID: mdl-34004266

ABSTRACT

In angiosperm sexual reproduction, the male pollen tube undergoes a series of interactions with female tissues. For efficient growth and precise guidance, the pollen tube perceives extracellular ligands. In recent decades, various types of secreted cysteine-rich peptides (CRPs) have been identified as peptide ligands that regulate diverse angiosperm reproduction processes, including pollen tube germination, growth, guidance, and rupture. Notably, in two distant core eudicot plants, multiple LURE-type CRPs were found to be secreted from egg-accompanying synergid cells, and these CRPs act as a cocktail of pollen tube attractants for the final step of pollen tube guidance. LURE-type CRPs have species-preferential activity, even among close relatives, and exhibit remarkably divergent molecular evolution with conserved cysteine frameworks, demonstrating that they play a key role in species recognition in pollen tube guidance. In this review, I focus on "reproductive CRPs," particularly LURE-type CRPs, which underlie common but species-specific mechanisms in angiosperm sexual reproduction, and discuss their action, functional regulation, receptors, and evolution.


Subject(s)
Cysteine/metabolism , Peptides/metabolism , Plant Proteins/metabolism , Pollen Tube/growth & development , Pollination , Reproduction , Pollen Tube/metabolism , Signal Transduction
5.
Nat Commun ; 12(1): 2331, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888710

ABSTRACT

During the double fertilization process, pollen tubes deliver two sperm cells to an ovule containing the female gametes. In the pollen tube, the vegetative nucleus and sperm cells move together to the apical region where the vegetative nucleus is thought to play a crucial role in controlling the direction and growth of the pollen tube. Here, we report the generation of pollen tubes in Arabidopsis thaliana whose vegetative nucleus and sperm cells are isolated and sealed by callose plugs in the basal region due to apical transport defects induced by mutations in the WPP domain-interacting tail-anchored proteins (WITs) and sperm cell-specific expression of a dominant mutant of the CALLOSE SYNTHASE 3 protein. Through pollen-tube guidance assays, we show that the physiologically anuclear mutant pollen tubes maintain the ability to grow and enter ovules. Our findings provide insight into the sperm cell delivery mechanism and illustrate the independence of the tip-localized vegetative nucleus from directional growth control of the pollen tube.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Cell Nucleus/metabolism , Pollen Tube/growth & development , Pollination/physiology , Arabidopsis Proteins/genetics , Cell Movement/physiology , Fertilization/physiology , Glucans/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Ovule/metabolism , Plants, Genetically Modified , Pollen Tube/cytology , Pollen Tube/metabolism
6.
Plant Physiol ; 183(4): 1586-1599, 2020 08.
Article in English | MEDLINE | ID: mdl-32461300

ABSTRACT

The Aurora B kinase, encoded by the AURORA 3 (AUR3) gene in Arabidopsis (Arabidopsis thaliana), is a key regulator of cell division in all eukaryotes. Aurora B has at least two central functions during cell division; it is essential for the correct, i.e. balanced, segregation of chromosomes in mitosis and meiosis by controlling kinetochore function, and it acts at the division plane, where it is necessary to complete cytokinesis. To accomplish these two spatially distinct functions, Aurora B in animals is guided to its sites of action by Borealin, inner centromere protein (INCENP), and Survivin, which, together with Aurora B, form the chromosome passenger complex (CPC). However, besides Aurora homologs, only a candidate gene with restricted homology to INCENP has been described in Arabidopsis, raising the question of whether a full complement of the CPC exists in plants and how Aurora homologs are targeted subcellularly. Here, we have identified and functionally characterized a Borealin homolog, BOREALIN RELATED (BORR), in Arabidopsis. Together with detailed localization studies including the putative Arabidopsis INCENP homolog, these results support the existence of a CPC in plants.


Subject(s)
Cell Cycle Proteins/metabolism , Arabidopsis/metabolism , Aurora Kinase B/metabolism , Centromere/metabolism , Phosphorylation
7.
Front Plant Sci ; 11: 588700, 2020.
Article in English | MEDLINE | ID: mdl-33510743

ABSTRACT

During double fertilization in angiosperms, two male gametes (sperm cells), are released from a pollen tube into the receptive region between two female gametes; the egg cell and the central cell of the ovule. The sperm cells fertilize the egg cell and the central cell in a one-to-one manner to yield a zygote and an endosperm, respectively. The one-to-one distribution of the sperm cells to the two female gametes is strictly regulated, possibly via communication among the four gametes. Polyspermy block is the mechanism by which fertilized female gametes prevent fertilization by a secondary sperm cell, and has been suggested to operate in the egg cell rather than the central cell. However, whether the central cell also has the ability to avoid polyspermy during double fertilization remains unclear. Here, we assessed the one-to-one fertilization mechanism of the central cell by laser irradiation of the female gametes and live cell imaging of the fertilization process in Arabidopsis thaliana. We successfully disrupted an egg cell within the ovules by irradiation using a femtosecond pulse laser. In the egg-disrupted ovules, the central cell predominantly showed single fertilization by one sperm cell, suggesting that neither the egg cell nor its fusion with one sperm cell is necessary for one-to-one fertilization (i.e., monospermy) of the central cell. In addition, using tetraspore mutants possessing multiple sperm cell pairs in one pollen, we demonstrated that normal double fertilization was observed even when excess sperm cells were released into the receptive region between the female gametes. In ovules accepting four sperm cells, the egg cell never fused with more than one sperm cell, whereas half of the central cells fused with more than one sperm cell (i.e., polyspermy) even 1 h later. Our results suggest that the central cell can block polyspermy during double fertilization, although the central cell is more permissive to polyspermy than the egg cell. The potential contribution of polyspermy block by the central cell is discussed in terms of how it is involved in the one-to-one distribution of the sperm cells to two distinct female gametes.

8.
Plant Cell Physiol ; 61(4): 712-721, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31879778

ABSTRACT

Development of pollen, the male gametophyte of flowering plants, is tightly controlled by dynamic changes in gene expression. Recent research to clarify the molecular aspects of pollen development has revealed the involvement of several transcription factors in the induction of gene expression. However, limited information is available about the factors involved in the negative regulation of gene expression to eliminate unnecessary transcripts during pollen development. In this study, we revealed that AtNOT1 is an essential protein for proper pollen development and germination capacity. AtNOT1 is a scaffold protein of the AtCCR4-NOT complex, which includes multiple components related to mRNA turnover control in Arabidopsis. Phenotypic analysis using atnot1 heterozygote mutant pollen showed that the mature mutant pollen failed to germinate and also revealed abnormal localization of nuclei and a specific protein at the tricellular pollen stage. Furthermore, transcriptome analysis of atnot1 heterozygote mutant pollen showed that the downregulation of a large number of transcripts, along with the upregulation of specific transcripts required for pollen tube germination by AtNOT1 during late microgametogenesis, is important for proper pollen development and germination. Overall, our findings provide new insights into the negative regulation of gene expression during pollen development, by showing the severely defective phonotype of atnot1 heterozygote mutant pollen.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Pollen/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Germination/genetics , Heterozygote , Pollen/metabolism , Pollen Tube/metabolism , Pollination , Promoter Regions, Genetic , Transcription Factors
9.
Nat Commun ; 8(1): 1331, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29109411

ABSTRACT

Transportation of the immobile sperms directed by pollen tubes to the ovule-enclosed female gametophytes is important for plant sexual reproduction. The defensin-like (DEFL) cysteine-rich peptides (CRPs) LUREs play an essential role in pollen tube attraction to the ovule, though their receptors still remain controversial. Here we provide several lines of biochemical evidence showing that the extracellular domain of the leucine-rich repeat receptor kinase (LRR-RK) PRK6 from Arabidopsis thaliana directly interacts with AtLURE1 peptides. Structural study reveals that a C-terminal loop of the LRR domain (AtPRK6LRR) is responsible for recognition of AtLURE1.2, mediated by a set of residues largely conserved among PRK6 homologs from Arabidopsis lyrata and Capsella rubella, supported by in vitro mutagenesis and semi-in-vivo pollen tube growth assays. Our study provides evidence showing that PRK6 functions as a receptor of the LURE peptides in A. thaliana and reveals a unique ligand recognition mechanism of LRR-RKs.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Pollen Tube/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Capsella/genetics , Capsella/metabolism , Crystallography, X-Ray , Genes, Plant , Ligands , Models, Molecular , Mutagenesis, Site-Directed , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Static Electricity
10.
Genome Biol ; 18(1): 94, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28521766

ABSTRACT

BACKGROUND: Gene bodies of vertebrates and flowering plants are occupied by the histone variant H3.3 and DNA methylation. The origin and significance of these profiles remain largely unknown. DNA methylation and H3.3 enrichment profiles over gene bodies are correlated and both have a similar dependence on gene transcription levels. This suggests a mechanistic link between H3.3 and gene body methylation. RESULTS: We engineered an H3.3 knockdown in Arabidopsis thaliana and observed transcription reduction that predominantly affects genes responsive to environmental cues. When H3.3 levels are reduced, gene bodies show a loss of DNA methylation correlated with transcription levels. To study the origin of changes in DNA methylation profiles when H3.3 levels are reduced, we examined genome-wide distributions of several histone H3 marks, H2A.Z, and linker histone H1. We report that in the absence of H3.3, H1 distribution increases in gene bodies in a transcription-dependent manner. CONCLUSIONS: We propose that H3.3 prevents recruitment of H1, inhibiting H1's promotion of chromatin folding that restricts access to DNA methyltransferases responsible for gene body methylation. Thus, gene body methylation is likely shaped by H3.3 dynamics in conjunction with transcriptional activity.


Subject(s)
Arabidopsis/genetics , DNA, Plant/genetics , Epigenesis, Genetic , Genome, Plant , Histones/genetics , Plant Proteins/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromatin/chemistry , Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA, Plant/metabolism , Histones/metabolism , Plant Proteins/metabolism , Transcription, Genetic
11.
Nature ; 531(7593): 245-8, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26961657

ABSTRACT

Directional control of tip-growing cells is essential for proper tissue organization and cell-to-cell communication in animals and plants. In the sexual reproduction of flowering plants, the tip growth of the male gametophyte, the pollen tube, is precisely guided by female cues to achieve fertilization. Several female-secreted peptides have recently been identified as species-specific attractants that directly control the direction of pollen tube growth. However, the method by which pollen tubes precisely and promptly respond to the guidance signal from their own species is unknown. Here we show that tip-localized pollen-specific receptor-like kinase 6 (PRK6) with an extracellular leucine-rich repeat domain is an essential receptor for sensing of the LURE1 attractant peptide in Arabidopsis thaliana under semi-in-vivo conditions, and is important for ovule targeting in the pistil. PRK6 interacted with pollen-expressed ROPGEFs (Rho of plant guanine nucleotide-exchange factors), which are important for pollen tube growth through activation of the signalling switch Rho GTPase ROP1 (refs 7, 8). PRK6 conferred responsiveness to AtLURE1 in pollen tubes of the related species Capsella rubella. Furthermore, our genetic and physiological data suggest that PRK6 signalling through ROPGEFs and sensing of AtLURE1 are achieved in cooperation with the other PRK family receptors, PRK1, PRK3 and PRK8. Notably, the tip-focused PRK6 accumulated asymmetrically towards an external AtLURE1 source before reorientation of pollen tube tip growth. These results demonstrate that PRK6 acts as a key membrane receptor for external AtLURE1 attractants, and recruits the core tip-growth machinery, including ROP signalling proteins. This work provides insights into the orchestration of efficient pollen tube growth and species-specific pollen tube attraction by multiple receptors during male-female communication.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Phosphotransferases/metabolism , Pollen Tube/growth & development , Pollen Tube/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Capsella/genetics , Capsella/metabolism , Capsella/physiology , GTP-Binding Proteins/metabolism , Mutation , Ovule/metabolism , Phenotype , Phosphotransferases/chemistry , Phosphotransferases/genetics , Pollen Tube/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Reproduction , Species Specificity
12.
Cell ; 161(4): 907-18, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25913191

ABSTRACT

In flowering plants, fertilization-dependent degeneration of the persistent synergid cell ensures one-on-one pairings of male and female gametes. Here, we report that the fusion of the persistent synergid cell and the endosperm selectively inactivates the persistent synergid cell in Arabidopsis thaliana. The synergid-endosperm fusion causes rapid dilution of pre-secreted pollen tube attractant in the persistent synergid cell and selective disorganization of the synergid nucleus during the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling, an inducer of the synergid nuclear disorganization. Therefore, two female gametes (the egg and the central cell) control independent pathways yet coordinately accomplish the elimination of the persistent synergid cell by double fertilization.


Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Arabidopsis/embryology , Cell Fusion , Endosperm/metabolism , Mitosis , Peptides/metabolism , Plant Development , Plant Proteins/metabolism , Pollen Tube/metabolism
13.
Plant Cell Physiol ; 56(5): 1031-41, 2015 May.
Article in English | MEDLINE | ID: mdl-25713175

ABSTRACT

The female gametophytes of many flowering plants contain one egg cell, one central cell, two synergid cells and three antipodal cells with respective morphological characteristics and functions. These cells are formed by cellularization of a multinuclear female gametophyte. However, the dynamics and mechanisms of female gametophyte development remain largely unknown due to the lack of a system to visualize directly and manipulate female gametophytes in living material. Here, we established an in vitro ovule culture system to examine female gametophyte development in Torenia fournieri, a unique plant species with a protruding female gametophyte. The four-nucleate female gametophyte became eight nucleate by the final (third) mitosis and successively cellularized and matured to attract a pollen tube. The duration of final mitosis was 28 ± 6.5 min, and cellularization was completed in 54 ± 20 min after the end of the third mitosis. Fusion of polar nuclei in the central cell occurred in 13.1 ± 1.1 h, and onset of expression of LURE2, a pollen tube attractant gene, was visualized by a green fluorescent protein reporter 10.7 ± 2.3 h after cellularization. Laser disruption analysis demonstrated that the egg and central cells were required for synergid cells to acquire the pollen tube attraction function. Moreover, aberrant nuclear positioning and down-regulation of LURE2 were observed in one of the two synergid cells after disrupting an immature egg cell, suggesting that cell specification was affected. Our system provides insights into the precise dynamics and mechanisms of female gametophyte development in T. fournieri.


Subject(s)
Cell Communication , Imaging, Three-Dimensional/methods , Lasers , Magnoliopsida/growth & development , Ovule/cytology , Ovule/growth & development , Cell Differentiation , Mitosis , Models, Biological , Pollen Tube/cytology
14.
Plant Reprod ; 28(1): 33-46, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25673573

ABSTRACT

Key message: New gametic homozygous mutants. In angiosperms, a haploid male gamete (sperm cell) fuses with a haploid female gamete (egg cell) during fertilization to form a zygote carrying paternally and maternally derived chromosomes. Several fertilization-defective mutants in Arabidopsis thaliana, including a generative cell-specific 1 (gcs1)/hapless 2 mutant, the sperm cells of which are unable to fuse with female gametes, can only be maintained as heterozygous lines due to the infertile male or female gametes. Here, we report successful generation of a gcs1 homozygous mutant by heat-inducible removal of the GCS1 transgene. Using the gcs1 homozygous mutant as male, the defect in gamete fusion was observed with great frequency; in our direct observation by semi-in vivo fertilization assay using ovules, 100 % of discharged sperm cells in culture failed to show gamete fusion. More than 70 % of ovules in the pistil received a second pollen tube as attempted fertilization recovery. Moreover, gcs1 mutant sperm cells could fertilize female gametes at a low frequency in the pistil. This strategy to generate homozygous fertilization-defective mutants will facilitate novel approaches in plant reproduction research.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/physiology , Carrier Proteins/metabolism , Fertilization/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carrier Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/physiology , Reproduction/physiology
15.
Annu Rev Plant Biol ; 66: 393-413, 2015.
Article in English | MEDLINE | ID: mdl-25621518

ABSTRACT

During sexual reproduction of flowering plants, pollen tube guidance by pistil tissue is critical for the delivery of nonmotile sperm cells to female gametes. Multistep controls of pollen tube guidance can be divided into two phases: preovular guidance and ovular guidance. During preovular guidance, various female molecules, including stimulants for pollen germination and pollen tube growth, are provided to support tube growth toward the ovary, where the ovules are located. After entering the ovary, pollen tubes receive directional cues from their respective target ovules, including attractant peptides for precise, species-preferential attraction. Successful pollen tube guidance in the pistil requires not only nutritional and directional controls but also competency controls to make pollen tubes responsive to guidance cues, regulation to terminate growth once a pollen tube arrives at the target, and strategies to stop ovular attraction depending on the fertilization of female gametes.


Subject(s)
Fertilization , Magnoliopsida/growth & development , Ovule/metabolism , Pollen Tube/growth & development , Magnoliopsida/metabolism , Peptides/metabolism , Pollination
16.
Nat Commun ; 5: 4722, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25146889

ABSTRACT

Ca(2+) waves and oscillation are key signalling elements during the fertilization process of animals, and are involved, for example, in egg activation. In the unique double fertilization process in flowering plants, both the egg cell and the neighbouring central cell fuse with a sperm cell each. Here we succeeded in imaging cytosolic Ca(2+) in these two cells, and in the two synergid cells that accompany the gametes during semi-in vivo double fertilization. Following pollen tube discharge and plasmogamy, the egg and central cells displayed transient Ca(2+) spikes, but not oscillations. Only the events in the egg cell correlated with the plasmogamy. In contrast, the synergid cells displayed Ca(2+) oscillations on pollen tube arrival. The two synergid cells showed distinct Ca(2+) dynamics depending on their respective roles in tube reception. These Ca(2+) dynamics in the female gametophyte seem to represent highly specific signatures that coordinate successful double fertilization in the flowering plants.


Subject(s)
Arabidopsis/physiology , Calcium Signaling , Ovule/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Calcium-Binding Proteins/metabolism , Cytosol/metabolism , Fluorescent Dyes/metabolism , Microscopy, Confocal/methods , Molecular Imaging/methods , Ovule/cytology , Pollen Tube/cytology , Pollen Tube/metabolism
17.
Dev Cell ; 25(3): 317-23, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23673333

ABSTRACT

In flowering plants, double fertilization is normally accomplished by the first pollen tube, with the fertilized ovule subsequently inhibiting the attraction of a second pollen tube. However, the mechanism of second-pollen-tube avoidance remains unknown. We discovered that failure to fertilize either the egg cell or the central cell compromised second-pollen-tube avoidance in Arabidopsis thaliana. A similar disturbance was caused by disrupting the fertilization-independent seed (FIS) class polycomb-repressive complex 2 (FIS-PRC2), a central cell- and endosperm-specific chromatin-modifying complex for gene silencing. Therefore, the two female gametes have evolved their own signaling pathways. Intriguingly, second-pollen-tube attraction induced by half-successful fertilization allowed the ovules to complete double fertilization, producing a genetically distinct embryo and endosperm. We thus propose that each female gamete independently determines second-pollen-tube avoidance to maximize reproductive fitness in flowering plants.


Subject(s)
Arabidopsis Proteins/metabolism , Fertilization , Ovule/metabolism , Pollen Tube/metabolism , Repressor Proteins/metabolism , Aniline Compounds/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Biological Evolution , Cell Death , Chromatin Assembly and Disassembly , Fluorescence , Gene Silencing , Genetic Fitness , Ovule/cytology , Pollen Tube/cytology , Pollination , Polycomb Repressive Complex 2 , Repressor Proteins/genetics , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
18.
PLoS Biol ; 10(12): e1001449, 2012.
Article in English | MEDLINE | ID: mdl-23271953

ABSTRACT

Genes directly involved in male/female and host/parasite interactions are believed to be under positive selection. The flowering plant Arabidopsis thaliana has more than 300 defensin-like (DEFL) genes, which are likely to be involved in both natural immunity and cell-to-cell communication including pollen-pistil interactions. However, little is known of the relationship between the molecular evolution of DEFL genes and their functions. Here, we identified a recently evolved cluster of DEFL genes in A. thaliana and demonstrated that these DEFL (cysteine-rich peptide [CRP810_1]) peptides, named AtLURE1 peptides, are pollen tube attractants guiding pollen tubes to the ovular micropyle. The AtLURE1 genes formed the sole species-specific cluster among DEFL genes compared to its close relative, A. lyrata. No evidence for positive selection was detected in AtLURE1 genes and their orthologs, implying neutral evolution of AtLURE1 genes. AtLURE1 peptides were specifically expressed in egg-accompanying synergid cells and secreted toward the funicular surface through the micropyle. Genetic analyses showed that gametophytic mutants defective in micropylar guidance (myb98, magatama3, and central cell guidance) do not express AtLURE1 peptides. Downregulation of the expression of these peptides impaired precise pollen tube attraction to the micropylar opening of some populations of ovules. Recombinant AtLURE1 peptides attracted A. thaliana pollen tubes at a higher frequency compared to A. lyrata pollen tubes, suggesting that these peptides are species-preferential attractants in micropylar guidance. In support of this idea, the heterologous expression of a single AtLURE1 peptide in the synergid cell of Torenia fournieri was sufficient to guide A. thaliana pollen tubes to the T. fournieri embryo sac and to permit entry into it. Our results suggest the unique evolution of AtLURE1 genes, which are directly involved in male-female interaction among the DEFL multigene family, and furthermore suggest that these peptides are sufficient to overcome interspecific barriers in gametophytic attraction and penetration.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Defensins/genetics , Genes, Plant/genetics , Multigene Family/genetics , Pollen Tube/genetics , Amino Acid Sequence , Arabidopsis/cytology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Cysteine/genetics , Defensins/chemistry , Defensins/metabolism , Diffusion , Ecotype , Evolution, Molecular , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Lamiaceae/genetics , Molecular Sequence Data , Mutation/genetics , Ovule/cytology , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Phylogeny , Pollen Tube/cytology , Recombinant Proteins/metabolism , Reproductive Isolation , Species Specificity , Synteny/genetics , Transformation, Genetic
19.
Curr Opin Plant Biol ; 14(5): 614-21, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21855396

ABSTRACT

Pollen tube guidance is the mechanism whereby the direction of pollen tube growth is controlled by female cells of the pistil. Some key genes and molecules have recently been identified as being involved in pollen tube guidance. In this review article, we discuss the molecular basis of pollen tube guidance, especially in Arabidopsis thaliana, by summarizing recent progress in various plant species. Attractant molecules and receptors for gametophytic pollen tube guidance are the focus of this article.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , Ovule/physiology , Pollen Tube/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Signal Transduction
20.
Nature ; 458(7236): 357-61, 2009 Mar 19.
Article in English | MEDLINE | ID: mdl-19295610

ABSTRACT

For more than 140 years, pollen tube guidance in flowering plants has been thought to be mediated by chemoattractants derived from target ovules. However, there has been no convincing evidence of any particular molecule being the true attractant that actually controls the navigation of pollen tubes towards ovules. Emerging data indicate that two synergid cells on the side of the egg cell emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen tube guidance. Here we report that secreted, cysteine-rich polypeptides (CRPs) in a subgroup of defensin-like proteins are attractants derived from the synergid cells. We isolated synergid cells of Torenia fournieri, a unique plant with a protruding embryo sac, to identify transcripts encoding secreted proteins as candidate molecules for the chemoattractant(s). We found two CRPs, abundantly and predominantly expressed in the synergid cell, which are secreted to the surface of the egg apparatus. Moreover, they showed activity in vitro to attract competent pollen tubes of their own species and were named as LUREs. Injection of morpholino antisense oligomers against the LUREs impaired pollen tube attraction, supporting the finding that LUREs are the attractants derived from the synergid cells of T. fournieri.


Subject(s)
Chemotactic Factors/metabolism , Defensins/metabolism , Magnoliopsida/cytology , Magnoliopsida/growth & development , Pollen Tube/growth & development , Amino Acid Sequence , Chemotactic Factors/chemistry , Chemotactic Factors/pharmacology , Defensins/chemistry , Defensins/pharmacology , Expressed Sequence Tags , Magnoliopsida/drug effects , Magnoliopsida/genetics , Molecular Sequence Data , Oligonucleotides, Antisense/genetics , Pollen Tube/drug effects , Pollen Tube/genetics , RNA, Plant/antagonists & inhibitors , RNA, Plant/genetics , RNA, Plant/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL