Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 258: 119418, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897434

ABSTRACT

Highly colored azo dye-contaminated wastewater poses significant environmental threats and requires effective treatment before discharge. The anaerobic azo dye treatment method is a cost-effective and environmentally friendly solution, while its time-consuming and inefficient processes present substantial challenges for industrial scaling. Thus, the use of iron materials presents a promising alternative. Laboratory studies have demonstrated that systems coupled with iron materials enhance the decolorization efficiency and reduce the processing time. To fully realize the potential of iron materials for anaerobic azo dye treatment, a comprehensive synthesis and evaluation based on individual-related research studies, which have not been conducted to date, are necessary. This review provides, for the first time, an extensive and detailed overview of the utilization of iron materials for azo dye treatment, with a focus on decolorization. It assesses the treatment potential, analyzes the influencing factors and their impacts, and proposes metabolic pathways to enhance anaerobic dye treatment using iron materials. The physicochemical characteristics of iron materials are also discussed to elucidate the mechanisms behind the enhanced bioreduction of azo dyes. This study further addresses the current obstacles and outlines future prospects for industrial-scale application of iron-coupled treatment systems.

2.
Biofouling ; 39(4): 459-472, 2023.
Article in English | MEDLINE | ID: mdl-37341304

ABSTRACT

Microbial biofilm development on the membrane surface of bioreactors results in membrane flux decline (biofouling). Biofouling is one of the most severe problems limiting the use of these bioreactors. For detailed understanding of the biofouling, microbial community and dissolved organic matter analyses have been performed in recent decades. Although most previous studies have focused on mature biofilms at the end point of biofouling, understanding of the early stages is crucial to mitigate biofilm formation. Thus, recent studies have focused on the impact of early-stage biofilm development and indicated a clear difference in microbial communities between early-stage and mature biofilms. In addition, certain bacteria play a significant role in early-stage biofilms. The present mini-review systematically summarizes the foulants present during early-stage fouling, provides novel perspectives on fouling mechanisms, and discusses the neglected effect of planktonic bacteria.


Subject(s)
Biofilms , Biofouling , Sewage/microbiology , Bacteria , Bioreactors/microbiology , Membranes, Artificial
3.
Chemosphere ; 309(Pt 1): 136557, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36185000

ABSTRACT

The main objective of this study was to investigate the cause of gel fouling in membrane bioreactors (MBRs) treating real sewage in terms of soluble microbial products (SMPs) and microbial aspects. Two anoxic/oxic-MBRs were operated as the control reactor (S1) and the sludge loading rate increased reactor (S2). The reactors were operated under low-temperature around 11 °C conditions. Membrane permeability substantially decreased in S2, and gel layer biofilm was formed on membrane surface. In contrast, the permeability of S1 gradually decreased and cake layer formed. When gel fouling occurred, the protein and polysaccharide of SMP in S2 were 47 and 23 mg L-1, which were significantly lower than those recorded in S1 accounted for 118 and 68 mg L-1, respectively. Furthermore, the total organic carbon concentration of SMPs was 24 mg L-1, which was lower than the influent in S2, accounted for 62 mg L-1. Finally, Campylobacteraceae which exists in sewage and uncultured OD1, dominated the gel layer biofilm in S2, unlike the cake layer biofilm in S1. These results indicated that the gel layer biofilm might be composed of influent substances, demonstrating the importance of influent decomposition in MBR for gel fouling mitigation.


Subject(s)
Membranes, Artificial , Sewage , Bioreactors , Biofilms , Carbon
4.
Appl Microbiol Biotechnol ; 105(4): 1721-1729, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33481065

ABSTRACT

Biofilm development on the membrane surface is one of the main reasons for membrane fouling in membrane bioreactors (MBRs) and it is a big problem for their stable operation. Precise information on the microbial community composition of the biofilm is needed for a better understanding of biofilm development. However, there have been limited investigations of the relationship between the biofilm formation process and the microbial community of activated sludge and biofilm in MBRs treating real sewage. In this study, relationships between the microbial community structure of biofilm and activated sludge at each biofilm formation stage were investigated and biofilm growth was elucidated by nondestructive observations. Two anoxic/oxic MBRs were operated and membrane fouling was induced. Permeability rapidly decreased in both reactors and live cell microcolonies were formed on dead cell conditioning film on the membrane surface. Principal component analysis based on 16S rRNA gene sequences showed that the biofilm microbial community changed significantly from middle stage to mature biofilm when compared with that of activated sludge. The abundance of specific bacteria, such as unclassified Neisseriaceae, increased in middle-stage biofilm and the diversity indexes of middle-stage biofilm were lower than those of mature biofilm and activated sludge. These results suggested that the presence of specific bacteria with colonization ability played a crucial role in biofilm formation. Strategies are needed to target membrane fouling mitigation during early- and middle-stage biofilm formation to reduce MBR membrane fouling. KEY POINTS: • Microbial community of mature biofilm was approached to that of activated sludge. • In the middle-stage biofilm, live cells colonized on a dead-cell-conditioning-film. • Microbial diversity was lower in live cell colonizing stage than in activated sludge.


Subject(s)
Bioreactors , Sewage , Biofilms , Membranes, Artificial , RNA, Ribosomal, 16S/genetics , Waste Disposal, Fluid
5.
Environ Technol ; 42(14): 2154-2162, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31752629

ABSTRACT

This study compares the performance of nanosecond pulse (NSP) and direct current (DC) power supplies for use in a municipal wastewater treatment by electrocoagulation (EC). Four Al plates connected in monopolar-parallel configuration (MP-P) were used as electrodes during the EC process. The maximum chemical oxygen demand (COD) removal efficiency reached 68% and 80% using DC and NSP, respectively. Moreover, NSP treatment reduced approximately 15% of the specific energy consumption (SEC) compared with that by DC at a similar COD removal efficiency of ≈ 68%, which was used as a benchmark value. In addition, when using NSP, the SEC required to increase the COD removal efficiency from 60% to 68% was two to three times less than that when DC was applied. The results suggest that an NSP operating at 10 kHz frequency (f) and 1 µs pulse width (pw) are preferred for obtaining higher COD removal efficiencies at a low SEC. The use of an NSP for EC can enhance the COD removal efficiency and reduce the wastewater treatment SEC. The results presented herein promote the use of EC systems combined with renewable energy sources for reducing the net carbon footprint of wastewater processing.


Subject(s)
Waste Disposal, Fluid , Water Purification , Electrocoagulation , Electrodes , Hydrogen-Ion Concentration , Industrial Waste/analysis , Wastewater
6.
Sci Total Environ ; 759: 143474, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33213916

ABSTRACT

The aim of this study was to evaluate the contribution of dissolved organic carbon (DOC) and microbial community dynamics to membrane fouling development in membrane bioreactor (MBR). We operated laboratory-scale anoxic/oxic-MBRs under prolonged starvation conditions in different seasons and the dynamics and diversity of the microbial communities were investigated. Although fouled-MBRs showed DOC accumulation in the activated sludge (AS), the fouling-mitigated MBR suggested that dissolved oxygen was consumed and DOC of the sludge supernatant was degraded. 16S rRNA genes analysis of AS in the MBRs revealed that Chitinophagaceae and Candidatus Promineofilum specifically increased in the fouling-mitigated MBR, suggesting that they played important roles in membrane fouling mitigation; high microbial diversity in the reactor also contributed to fouling mitigation. In the fouled reactor, enrichment of Xanthomonadaceae might be related to fouling causing substances formation leading to membrane fouling development; lower microbial diversity also contributed to fouling development in the fouled MBR.


Subject(s)
Bioreactors , Membranes, Artificial , Carbon , RNA, Ribosomal, 16S/genetics , Sewage
7.
Water Res ; 146: 30-36, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30261359

ABSTRACT

Carbon and nitrogen stable isotope ratios (δ13C and δ15N) were determined in activated sludge, which was exposed to endogenous conditions for 36 days and contained a wide diversity of organisms across several trophic levels. The aim of this study was to elucidate the fluctuation of δ13C and δ15N through trophic transfer in the microbial consortia. The sludge was evaluated in view of sludge mass, bacterial community, higher trophic organisms, sludge δ13C and δ15N, and δ15N and δ18O of nitrate. The results show that the activated sludge became more enriched with 15N as degradation proceeded. Eventually, the mixed liquor volatile suspended solid concentrations in the activated sludge decreased from 1610 to 710 mg/L and the δ15N of the sludge increased from 8.3‰ to 10.8‰. In contrast, the δ13C values of the sludge were stable. Microscope observations confirmed that consumers such as Rotifera, Tardigrada and Annelida (Aelosoma sp.) were present in the activated sludge for the entire operational period. The abundance of those organisms drastically changed during the operational periods, and the diversity in bacterial community also changed, resulting in community succession. Changes in biotic community, reduction in sludge mass, and increase in δ15N of the sludge occurred during the sludge degradation processes. This implies that the sludge degradation was partly caused by the trophic conversion of the sludge-derived nitrogen in the food web. The δ15N of the sludge can be used as an indicator of the sludge degradation through trophic transfer in wastewater treatment reactors. These findings provide new insights into understanding trophic transfer during microbial community succession and the effects of the feeding process on sludge degradation.


Subject(s)
Food Chain , Sewage , Carbon Isotopes , Nitrogen Isotopes , Wastewater
8.
Sci Rep ; 8(1): 11427, 2018 07 30.
Article in English | MEDLINE | ID: mdl-30061582

ABSTRACT

Membrane fouling in membrane bioreactors (MBR) remains a major issue and knowledge of microbes associated with biofilm formation might facilitate the control of this phenomenon, Thus, an anoxic/oxic membrane bioreactor (A/O-MBR) was operated under an extremely low organic loading rate (0.002 kg-COD·m-3·day-1) to induce membrane fouling and the major biofilm-forming bacteria were identified. After operation under extremely low organic loading condition, the reactor showed accumulation of total nitrogen and phosphorus along with biofilm development on the membrane surface. Thus, membrane fouling induced by microbial cell lysis was considered to have occurred. Although no major changes were observed in the microbial community structure of the activated sludge in the MBR before and after membrane fouling, uncultured bacteria were specifically increased in the biofilm. Therefore, bacteria belonging to candidate phyla including TM6, OD1 and Gammaproteobacteria could be important biofilm-forming bacteria.


Subject(s)
Bacteria/metabolism , Biofilms/growth & development , Biofouling , Bioreactors/microbiology , Organic Chemicals/analysis , Aerobiosis , Anaerobiosis , Principal Component Analysis , Wastewater/chemistry , Wastewater/microbiology
9.
J Environ Manage ; 222: 155-163, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29843088

ABSTRACT

A rotational sponge (RS) reactor was proposed as an alternative sewage treatment process. Prior to the application of an RS reactor for sewage treatment, this study evaluated reactor performance with regard to organic removal, nitrification, and nitrogen removal and sought to optimize the rotational speed and hydraulic retention time (HRT) of the system. RS reactor obtained highest COD removal, nitrification, and nitrogen removal efficiencies of 91%, 97%, and 65%, respectively. For the optimization, response surface methodology (RSM) was employed and optimum conditions of rotational speed and HRT were 18 rounds per hour and 4.8 h, respectively. COD removal, nitrification, and nitrogen removal efficiencies at the optimum conditions were 85%, 85%, and 65%, respectively. Corresponding removal rates at optimum conditions were 1.6 kg-COD m-3d-1, 0.3 kg-NH4+-N m-3d-1, and 0.12 kg-N m-3d-1. Microbial community analysis revealed an abundance of nitrifying and denitrifying bacteria in the reactor, which contributed to nitrification and nitrogen removal.


Subject(s)
Bioreactors , Nitrogen , Sewage , Bacteria , Nitrification , Nitrogen/chemistry , Nitrogen/isolation & purification , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...