Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Infect Dis ; 229(Supplement_2): S275-S284, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38164967

ABSTRACT

Monkeypox virus (MPXV) is a reemerging virus of global concern. An outbreak of clade I MPXV affected 20 captive chimpanzees in Cameroon in 2016. We describe the epidemiology, virology, phylogenetics, and clinical progression of this outbreak. Clinical signs included exanthema, facial swelling, perilaryngeal swelling, and eschar. Mpox can be lethal in captive chimpanzees, with death likely resulting from respiratory complications. We advise avoiding anesthesia in animals with respiratory signs to reduce the likelihood of death. This outbreak presented a risk to animal care staff. There is a need for increased awareness and a One Health approach to preparation for outbreaks in wildlife rescue centers in primate range states where MPXV occurs. Control measures should include quarantining affected animals, limiting human contacts, surveillance of humans and animals, use of personal protective equipment, and regular decontamination of enclosures.


Subject(s)
Monkeypox virus , Pan troglodytes , Animals , Humans , Cameroon , Disease Outbreaks , Animals, Wild
2.
Science ; 382(6676): 1282-1286, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38096373

ABSTRACT

The white-bellied pangolin (Phataginus tricuspis) is the world's most trafficked mammal and is at risk of extinction. Reducing the illegal wildlife trade requires an understanding of its origins. Using a genomic approach for tracing confiscations and analyzing 111 samples collected from known geographic localities in Africa and 643 seized scales from Asia between 2012 and 2018, we found that poaching pressures shifted over time from West to Central Africa. Recently, Cameroon's southern border has emerged as a site of intense poaching. Using data from seizures representing nearly 1 million African pangolins, we identified Nigeria as one important hub for trafficking, where scales are amassed and transshipped to markets in Asia. This origin-to-destination approach offers new opportunities to disrupt the illegal wildlife trade and to guide anti-trafficking measures.


Subject(s)
Crime , Extinction, Biological , Genomics , Pangolins , Wildlife Trade , Animals , Asia , Genome , Nigeria , Crime/prevention & control , Cameroon
3.
Virus Evol ; 8(1): veab110, 2022.
Article in English | MEDLINE | ID: mdl-35233291

ABSTRACT

Zoonotic spillover of animal viruses into human populations is a continuous and increasing public health risk. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the global impact of emergence. Considering the history and diversity of coronaviruses (CoVs), especially in bats, SARS-CoV-2 will likely not be the last to spillover from animals into human populations. We sampled and tested wildlife in the Central African country Cameroon to determine which CoVs are circulating and how they relate to previously detected human and animal CoVs. We collected animal and ecological data at sampling locations and used family-level consensus PCR combined with amplicon sequencing for virus detection. Between 2003 and 2018, samples were collected from 6,580 animals of several different orders. CoV RNA was detected in 175 bats, a civet, and a shrew. The CoV RNAs detected in the bats represented 17 different genetic clusters, coinciding with alpha (n = 8) and beta (n = 9) CoVs. Sequences resembling human CoV-229E (HCoV-229E) were found in 40 Hipposideridae bats. Phylogenetic analyses place the human-derived HCoV-229E isolates closest to those from camels in terms of the S and N genes but closest to isolates from bats for the envelope, membrane, and RNA-dependent RNA polymerase genes. The CoV RNA positivity rate in bats varied significantly (P < 0.001) between the wet (8.2 per cent) and dry seasons (4.5 per cent). Most sampled species accordingly had a wet season high and dry season low, while for some the opposite was found. Eight of the suspected CoV species of which we detected RNA appear to be entirely novel CoV species, which suggests that CoV diversity in African wildlife is still rather poorly understood. The detection of multiple different variants of HCoV-229E-like viruses supports the bat reservoir hypothesis for this virus, with the phylogenetic results casting some doubt on camels as an intermediate host. The findings also support the previously proposed influence of ecological factors on CoV circulation, indicating a high level of underlying complexity to the viral ecology. These results indicate the importance of investing in surveillance activities among wild animals to detect all potential threats as well as sentinel surveillance among exposed humans to determine emerging threats.

4.
Microbiol Resour Announc ; 10(49): e0088221, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34881972

ABSTRACT

Enteroviruses infect humans and animals and can cause disease, and some may be transmitted across species barriers. We tested Central African wildlife and found Enterovirus RNA in primates (17) and rodents (2). Some sequences were very similar, while others were dissimilar to known species, highlighting the underexplored enterovirus diversity in wildlife.

5.
Vector Borne Zoonotic Dis ; 21(7): 552-555, 2021 07.
Article in English | MEDLINE | ID: mdl-34010076

ABSTRACT

The family Rhabdoviridae contains diverse viruses, including vector-borne and nonvector-borne viruses, some that are human pathogens, including rabies virus and also nonpathogenic viruses. Bats, which are a known reservoir of viruses with zoonotic potential including coronaviruses, also carry multiple rhabdoviruses such as but not limited to lyssaviruses. We collected samples from 193 insectivorous and frugivorous bats in the Republic of the Congo and tested them for rhabdovirus RNA. Four samples were found positive for viral RNA representing sequences of four different, not previously described rhabdoviruses. Although phylogenetic and taxonomic placement of the novel sequences is uncertain, similarities with previously detected rhabdovirus sequences in bats suggest that these could represent vertebrate viruses. Considering the pathogenic risks some rhabdoviruses pose for humans, these results highlight the need for more research and surveillance regarding rhabdoviruses and bats.


Subject(s)
Chiroptera , Rhabdoviridae Infections , Rhabdoviridae , Animals , Congo , Phylogeny , Rhabdoviridae/genetics , Rhabdoviridae Infections/epidemiology , Rhabdoviridae Infections/veterinary
6.
Microb Genom ; 7(4)2021 04.
Article in English | MEDLINE | ID: mdl-33871330

ABSTRACT

Adenoviruses (AdVs) are diverse pathogens of humans and animals, with several dozen bat AdVs already identified. Considering that over 100 human AdVs are known, and the huge diversity of bat species, many bat AdVs likely remain undiscovered. To learn more about AdV prevalence, diversity and evolution, we sampled and tested bats in Cameroon using several PCR assays for viral and host DNA. AdV DNA was detected in 14 % of the 671 sampled animals belonging to 37 different bat species. There was a correlation between species roosting in larger groups and AdV DNA detection. The detected AdV DNA belonged to between 28 and 44 different, mostly previously unknown, mastadenovirus species. The novel isolates are phylogenetically diverse and while some cluster with known viruses, others appear to form divergent new clusters. The phylogenetic tree of novel and previously known bat AdVs does not mirror that of the various host species, but does contain structures consistent with a degree of virus-host co-evolution. Given that closely related isolates were found in different host species, it seems likely that at least some bat AdVs have jumped species barriers, probably in the more recent past; however, the tree is also consistent with such events having taken place throughout bat AdV evolution. AdV diversity was highest in bat species roosting in large groups. The study significantly increased the diversity of AdVs known to be harboured by bats, and suggests that host behaviours, such as roosting size, may be what limits some AdVs to one species rather than an inability of AdVs to infect other related hosts.


Subject(s)
Adenoviridae/genetics , Biodiversity , Biological Evolution , Chiroptera/virology , Adenoviridae/classification , Adenoviridae/isolation & purification , Adenoviridae/physiology , Animals , Host Specificity , Humans , Phylogeny
7.
Arch Virol ; 164(9): 2359-2366, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31240484

ABSTRACT

Rodent adenoviruses are important models for human disease. In contrast to the over 70 adenovirus types isolated from humans, few rodent adenoviruses are known, despite the vast diversity of rodent species. PCR and Sanger sequencing were used to investigate adenovirus diversity in wild rodents and shrews in Cameroon. Adenovirus DNA was detected in 13.8% of animals (n = 218). All detected sequences differ from known adenovirus types by more than 10% at the amino acid level, thus indicating up to 14 novel adenovirus species. These results highlight the diversity of rodent adenoviruses, their phylogeny, and opportunities for studying alternative adenovirus rodent models.


Subject(s)
Adenoviridae Infections/veterinary , Adenoviridae/isolation & purification , DNA, Viral/genetics , Genetic Variation , Rodent Diseases/virology , Shrews/virology , Adenoviridae/classification , Adenoviridae/genetics , Adenoviridae Infections/virology , Animals , Cameroon , Phylogeny , Rodentia/virology
8.
Intervirology ; 61(4): 155-165, 2018.
Article in English | MEDLINE | ID: mdl-30448834

ABSTRACT

OBJECTIVE: Herpesviruses belong to a diverse order of large DNA viruses that can cause diseases in humans and animals. With the goal of gathering information about the distribution and diversity of herpesviruses in wild rodent and shrew species in central Africa, animals in Cameroon and the Democratic Republic of the Congo were sampled and tested by PCR for the presence of herpesvirus DNA. METHODS: A broad range PCRs targeting either the Polymerase or the terminase gene were used for virus detection. Amplified products from PCR were sequenced and isolates analysed for phylogenetic placement. RESULTS: Overall, samples of 1,004 animals of various rodent and shrew species were tested and 24 were found to be positive for herpesvirus DNA. Six of these samples contained strains of known viruses, while the other positive samples revealed DNA sequences putatively belonging to 11 previously undescribed herpesviruses. The new isolates are beta- and gammaherpesviruses and the shrew isolates appear to form a separate cluster within the Betaherpesvirinae subfamily. CONCLUSION: The diversity of viruses detected is higher than in similar studies in Europe and Asia. The high diversity of rodent and shrew species occurring in central Africa may be the reason for a higher diversity in herpesviruses in this area.


Subject(s)
DNA, Viral/analysis , Genetic Variation , Herpesviridae/classification , Herpesviridae/isolation & purification , Rodentia/virology , Shrews/virology , Animals , Asia , Cameroon , DNA, Viral/genetics , Democratic Republic of the Congo , Herpesviridae/genetics , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA
9.
Ecohealth ; 15(1): 52-62, 2018 03.
Article in English | MEDLINE | ID: mdl-29230614

ABSTRACT

Recent outbreaks of Ebola virus disease and Zika virus disease highlight the need for disseminating accurate predictions of emerging zoonotic viruses to national governments for disease surveillance and response. Although there are published maps for many emerging zoonotic viruses, it is unknown if there is agreement among different models or if they are concordant with national expert opinion. Therefore, we reviewed existing predictions for five high priority emerging zoonotic viruses with national experts in Cameroon to investigate these issues and determine how to make predictions more useful for national policymakers. Predictive maps relied primarily on environmental parameters and species distribution models. Rift Valley fever virus and Crimean-Congo hemorrhagic fever virus predictions differed from national expert opinion, potentially because of local livestock movements. Our findings reveal that involving national experts could elicit additional data to improve predictions of emerging pathogens as well as help repackage predictions for policymakers.


Subject(s)
Zoonoses/epidemiology , Animals , Animals, Wild/virology , Cameroon/epidemiology , Geographic Mapping , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/prevention & control , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Lassa Fever/epidemiology , Lassa Fever/prevention & control , Marburg Virus Disease/epidemiology , Marburg Virus Disease/prevention & control , Policy Making , Rift Valley Fever/epidemiology , Rift Valley Fever/prevention & control , Zoonoses/prevention & control
10.
Arch Virol ; 161(3): 755-68, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26608064

ABSTRACT

The family Arteriviridae presently includes a single genus Arterivirus. This genus includes four species as the taxonomic homes for equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), porcine respiratory and reproductive syndrome virus (PRRSV), and simian hemorrhagic fever virus (SHFV), respectively. A revision of this classification is urgently needed to accommodate the recent description of eleven highly divergent simian arteriviruses in diverse African nonhuman primates, one novel arterivirus in an African forest giant pouched rat, and a novel arterivirus in common brushtails in New Zealand. In addition, the current arterivirus nomenclature is not in accordance with the most recent version of the International Code of Virus Classification and Nomenclature. Here we outline an updated, amended, and improved arterivirus taxonomy based on current data. Taxon-specific sequence cut-offs are established relying on a newly established open reading frame 1b phylogeny and pairwise sequence comparison (PASC) of coding-complete arterivirus genomes. As a result, the current genus Arterivirus is replaced by five genera: Equartevirus (for EAV), Rodartevirus (LDV + PRRSV), Simartevirus (SHFV + simian arteriviruses), Nesartevirus (for the arterivirus from forest giant pouched rats), and Dipartevirus (common brushtail arterivirus). The current species Porcine reproductive and respiratory syndrome virus is divided into two species to accommodate the clear divergence of the European and American "types" of PRRSV, both of which now receive virus status. The current species Simian hemorrhagic fever virus is divided into nine species to accommodate the twelve known simian arteriviruses. Non-Latinized binomial species names are introduced to replace all current species names to clearly differentiate them from virus names, which remain largely unchanged.


Subject(s)
Arteriviridae/classification , Arteriviridae/isolation & purification , RNA Virus Infections/veterinary , Arteriviridae/genetics , Cluster Analysis , Genome, Viral , Open Reading Frames , Phylogeny , RNA, Viral/genetics , Sequence Homology , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...