Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Vaccines (Basel) ; 10(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36016080

ABSTRACT

Staphylococcus saprophyticus is a Gram-positive coccus responsible for the occurrence of cystitis in sexually active, young females. While effective antibiotics against this organism exist, resistant strains are on the rise. Therefore, prevention via vaccines appears to be a viable solution to address this problem. In comparison to traditional techniques of vaccine design, computationally aided vaccine development demonstrates marked specificity, efficiency, stability, and safety. In the present study, a novel, multi-epitope vaccine construct was developed against S. saprophyticus by targeting fully sequenced proteomes of its five different strains, which were examined using a pangenome and subtractive proteomic strategy to characterize prospective vaccination targets. The three immunogenic vaccine targets which were utilized to map the probable immune epitopes were verified by annotating the entire proteome. The predicted epitopes were further screened on the basis of antigenicity, allergenicity, water solubility, toxicity, virulence, and binding affinity towards the DRB*0101 allele, resulting in 11 potential epitopes, i.e., DLKKQKEKL, NKDLKKQKE, QDKLKDKSD, NVMDNKDLE, TSGTPDSQA, NANSDGSSS, GSDSSSSNN, DSSSSNNDS, DSSSSDRNN, SSSDRNNGD, and SSDDKSKDS. All these epitopes have the efficacy to cover 99.74% of populations globally. Finally, shortlisted epitopes were joined together with linkers and three different adjuvants to find the most stable and immunogenic vaccine construct. The top-ranked vaccine construct was further scrutinized on the basis of its physicochemical characterization and immunological profile. The non-allergenic and antigenic features of modeled vaccine constructs were initially validated and then subjected to docking with immune receptor major histocompatibility complex I and II (MHC-I and II), resulting in strong contact. In silico cloning validations yielded a codon adaptation index (CAI) value of 1 and an ideal percentage of GC contents (46.717%), indicating a putative expression of the vaccine in E. coli. Furthermore, immune simulation demonstrated that, after injecting the proposed MEVC, powerful antibodies were produced, resulting in the sharpest peaks of IgM + IgG formation (>11,500) within 5 to 15 days. Experimental testing against S. saprophyticus can evaluate the safety and efficacy of these prophylactic vaccination designs.

2.
Molecules ; 27(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35566267

ABSTRACT

To ensure the better production and sustainable management of natural resources, a chemometric investigation was conducted to examine the effect of cooperative and harvesting periods on the crop yields and chemical compositions of Salvia rosmarinus Spenn essential oils in the Oriental region of Morocco. The samples were collected from three cooperatives over nine time periods from January 2018 to April 2019. The chemical composition of Salvia rosmarinus Spenn essential oils was analyzed by gas chromatography coupled with mass spectrometry. The data from this study were processed by multivariate analyses, including principal component analysis (PCA) and hierarchical cluster analysis (HCA). The disc diffusion technique and a determination of the minimal inhibitory concentration were performed to study the antibacterial properties of the oils. Statistical analysis showed that the cooperative and harvest period have a significant effect on yields. The highest yield of essential oil was recorded in April 2019 at cooperative C1. The PCA and the HCA results were divided into two groups: Group A for the summer season and group B for the winter season. The samples collected during summer were characterized by a high amount of 1,8-cineole component and a high yield of essential oil, whereas the samples collected during winter were qualified by a high amount of α-pinene component and a low yield of essential oil. The antibacterial activity of Salvia rosmarinus Spenn essential oils showed that Mycobacterium smegmatis ATCC23857 and Bacillus subtilis ATCC 23857 are the most susceptible strains, stopping growth at 1/500 (v/v). The least susceptible strain is Escherichia coli ATCC25922, with an MIC value corresponding to 1/250 (v/v). The findings of this study could have a positive economic impact on the exploitation of rosemary in the Oriental region, especially during the best harvest periods, as they indicate how to obtain the best yields of oils richest in 1,8-cineole and α-pinene chemotypes.


Subject(s)
Oils, Volatile , Rosmarinus , Salvia , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chemometrics , Eucalyptol , Gas Chromatography-Mass Spectrometry/methods , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Rosmarinus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL