Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(32): 8287-8295, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39143857

ABSTRACT

The human StAR-related lipid transfer domain protein 2 (STARD2), also known as phosphatidylcholine (PC) transfer protein, is a single-domain lipid transfer protein thought to transfer PC lipids between intracellular membranes. We performed extensive µs-long molecular dynamics simulations of STARD2 of its apo and holo forms in the presence or absence of complex lipid bilayers. The simulations in water reveal ligand-dependent conformational changes. In the 2 µs-long simulations of apo STARD2 in the presence of a lipid bilayer, we observed spontaneous reproducible PC lipid uptake into the protein hydrophobic cavity. We propose that the lipid extraction mechanism involves one to two metastable states stabilized by choline-tyrosine or choline-tryptophane cation-π interactions. Using free energy perturbation, we evaluate that PC-tyrosine cation-π interactions contribute 1.8 and 2.5 kcal/mol to the affinity of a PC-STARD2 metastable state, thus potentially providing a significant decrease of the energy barrier required for lipid desorption.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , Phosphatidylcholines , Phospholipid Transfer Proteins , Humans , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Phosphatidylcholines/chemistry , Thermodynamics , Tyrosine/chemistry , Phospholipid Transfer Proteins/chemistry
2.
J Phys Chem B ; 128(26): 6338-6351, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38903016

ABSTRACT

Ceramide transfer protein CERT is the mediator of nonvesicular transfer of ceramide from the ER to Golgi. In CERT, START is the domain responsible for the binding and transport of ceramide. A wealth of structural data has revealed a helix-grip fold surrounding a large hydrophobic cavity holding the ceramide. Yet, little is known about the mechanisms by which START releases the ceramide through the polar region and into the packed environment of cellular membranes. As such events do not lend themselves easily to experimental investigations, we used multiple unbiased microsecond-long molecular simulations. We propose a membrane-assisted mechanism in which the membrane acts as an allosteric effector initiating the release of ceramide and where the passage of the ceramide acyl chains is facilitated by the intercalation of a single phosphatidylcholine lipid in the cavity, practically greasing the ceramide way out. We verify using free energy calculation and experimental lipidomics data that CERT forms stable complexes with phosphatidylcholine lipids, in addition to ceramide, thus providing validation for the proposed mechanism.


Subject(s)
Ceramides , Molecular Dynamics Simulation , Ceramides/chemistry , Phosphatidylcholines/chemistry , Humans , Protein Domains , Thermodynamics , Cell Membrane/chemistry , Cell Membrane/metabolism , Protein Serine-Threonine Kinases
3.
J Mol Biol ; 436(11): 168572, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615744

ABSTRACT

STARD4 regulates cholesterol homeostasis by transferring cholesterol between the plasma membrane and endoplasmic reticulum. The STARD4 structure features a helix-grip fold surrounding a large hydrophobic cavity holding the sterol. Its access is controlled by a gate formed by the Ω1 and Ω4 loops and the C-terminal α-helix. Little is known about the mechanisms by which STARD4 binds to membranes and extracts/releases cholesterol. All available structures of STARD4 are without a bound sterol and display the same closed conformation of the gate. The cholesterol transfer activity of the mouse STARD4 is enhanced in the presence of anionic lipids, and in particular of phosphatidylinositol biphosphates (PIP2) for which two binding sites were proposed on the mouse STARD4 surface. Yet only one of these sites is conserved in human STARD4. We here report the results of a liposome microarray-based assay and microseconds-long molecular dynamics simulations of human STARD4 with complex lipid bilayers mimicking the composition of the donor and acceptor membranes. We show that the binding of apo form of human STARD4 is sensitive to the presence of PIP2 through two specific binding sites, one of which was not identified on mouse STARD4. We report two novel conformations of the gate in holo-STARD4: a yet-unobserved close conformation and an open conformation of Ω4 shedding light on the opening/closure mechanism needed for cholesterol uptake/release. Overall, the modulation of human STARD4 membrane-binding by lipid composition, and by the presence of the cargo supports the capacity of human STARD4 to achieve directed transfer between specific organelle membranes.


Subject(s)
Cell Membrane , Cholesterol , Membrane Transport Proteins , Molecular Dynamics Simulation , Animals , Humans , Mice , Binding Sites , Carrier Proteins/metabolism , Carrier Proteins/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Cholesterol/metabolism , Cholesterol/chemistry , Lipid Bilayers/metabolism , Lipid Bilayers/chemistry , Liposomes/metabolism , Liposomes/chemistry , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Protein Binding , Protein Conformation
4.
Nat Commun ; 15(1): 1136, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326316

ABSTRACT

Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose an effective solution to make data scattered in various locations and formats accessible for data-driven and machine learning applications using the overlay databank format. To demonstrate the practical relevance of such approach, we present the NMRlipids Databank-a community-driven, open-for-all database featuring programmatic access to quality-evaluated atom-resolution molecular dynamics simulations of cellular membranes. Cellular membrane lipid composition is implicated in diseases and controls major biological functions, but membranes are difficult to study experimentally due to their intrinsic disorder and complex phase behaviour. While MD simulations have been useful in understanding membrane systems, they require significant computational resources and often suffer from inaccuracies in model parameters. Here, we demonstrate how programmable interface for flexible implementation of data-driven and machine learning applications, and rapid access to simulation data through a graphical user interface, unlock possibilities beyond current MD simulation and experimental studies to understand cellular membranes. The proposed overlay databank concept can be further applied to other biomolecules, as well as in other fields where similar barriers hinder the AI revolution.


Subject(s)
Artificial Intelligence , Membrane Lipids , Cell Membrane , Molecular Dynamics Simulation , Machine Learning
5.
Proteins ; 90(12): 2045-2057, 2022 12.
Article in English | MEDLINE | ID: mdl-35799372

ABSTRACT

Vesicular glutamate transporters (VGLUTs) are essential components of synaptic transmission in the brain. Synaptic vesicles' luminal chloride and low pH regulate VGLUTs allosterically in a cooperative way. The luminal allosteric regulation of VGLUTs by chloride (Cl- ) and proton (H+ ) is possible through the collective work of luminal Cl- and H+ binding site residues. However, precise atomistic details about the luminal Cl- binding to the luminal Cl- binding site and the role of allosteric activation by H+ in VGLUTs are unknown. Using all-atom molecular dynamics simulations, this study demonstrates the critical role of Cl- binding site residues, details about Cl- binding to the luminal Cl- binding site, and the role of allosteric regulation of VGLUT2 by H+ at an atomistic level. By point mutations, we found out that Arginine (R184), Histidine (H128), and Glutamate (E191) are critical residues in the allosteric regulation of VGLUT2, R184 is the luminal Cl- binding site residue, and H128 and R88 support Cl- binding to R184. Furthermore, we found out that the protonation of H128 and E191 is important in Cl- binding to the luminal Cl- binding site. Furthermore, we investigated the essential interactions between Cl- and H+ binding site residues. Our results can give atomistic evidence for a previous experimental hypothesis about the VGLUTs luminal allosteric regulation by H+ and Cl- .


Subject(s)
Chlorides , Protons , Vesicular Glutamate Transport Protein 2/genetics , Vesicular Glutamate Transport Protein 2/metabolism , Chlorides/metabolism , Allosteric Regulation , Molecular Dynamics Simulation , Glutamic Acid/metabolism
6.
J Phys Chem B ; 125(26): 7163-7176, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34171196

ABSTRACT

The antimicrobial peptide (AMP) pleurocidin has a broad antimicrobial activity against Gram-negative and Gram-positive bacteria by perturbation and permeabilizing their membranes; however, understanding the mechanism of action of pleurocidin, a promising AMP for replacing current antibiotic agents, has tremendous importance for future applications. Hence, we applied all-atom (AA) and coarse-grained (CG) molecular dynamics (MD) simulations to provide molecular-level insights into the pore-forming process. The early stages of pore formation were examined by 500 ns AA simulations. The results demonstrated that pleurocidin has the ability to create a pore with two peptides through which water molecules can flow. However, the results of the 25 µs CG simulations indicate that the final pore will be created by accumulation of more than two peptides. The results show that after 2.5 µs of simulations, peptides will aggregate and create a channel-like pore across the membrane. Pleurocidin can construct a more efficient and stable pore in the anionic membranes than in the zwitterionic membranes. Moreover, the structure amphipathicity, polarity, and basic residues play crucial roles in the pore formation and flow of water molecules across the lipid bilayers. In general, the findings revealed that based on the lipid compositions of the membranes, pleurocidin could act by forming either toroidal or disordered toroidal pores with different peptide arrangements.


Subject(s)
Molecular Dynamics Simulation , Water , Fish Proteins , Lipid Bilayers , Pore Forming Cytotoxic Proteins
7.
J Chem Inf Model ; 59(7): 3262-3276, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31287686

ABSTRACT

Pleurocidin, a 25-residue cationic peptide, has antimicrobial activity against bacteria and fungi but exhibits very low hemolytic activity against human red blood cells (RBC). The peptide inserts into the bacterial membrane and causes the membrane to become permeable by either toroidal or carpet mechanism. Herein, to investigate the molecular basis for membrane selectivity of Pleurocidin, the interaction of the peptide with the different membrane models including the RBC, DOPC, DOPC/DOPG (3:1), POPE/POPG (3:1), and POPE/POPG (1:3) bilayers were studied by performing all-atom molecular dynamics (MD) simulation. The MD results indicated that the peptide interacted weakly with the neutral phospholipid bilayers (DOPC), whereas it made strong interactions with the negatively charged phospholipids. Pleurocidin maintained its α-helical structure during interactions with the anionic model membranes, but the peptide lost its secondary structure adjacent to the neutral model membranes. The results also revealed that the Trp-2, Phe-5, and Phe-6 residues, located in the N-terminal region of the peptide, played major roles in the insertion of the peptide into the model membranes. In addition, the peptide deeply inserted into the DOPC/DOPG membrane. The order analysis showed that Pleurocidin affected the order of anionic phospholipids more than zwitterionic phospholipids. The cholesterol molecules help the RBC membrane conserve integrity in response to Pleurocidin. This research has provided data on the Pleurocidin-membrane interactions and the reasons of resistance of eukaryotic membrane to the Pleurocidin at atomic details that are useful to develop potent AMPs targeting multidrug-resistant bacteria.


Subject(s)
Cell Membrane/chemistry , Eukaryota/chemistry , Fish Proteins/chemistry , Prokaryotic Cells/chemistry , Lipid Bilayers/chemistry , Models, Biological , Molecular Dynamics Simulation , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL