ABSTRACT
Currently, natural materials represent a sustainable option for the manufacture of biopolymers with numerous industrial applications and characteristics comparable with synthetic materials. Nopal mucilage (NM) is an excellent natural resource for the synthesis of bioplastics (BPs). In the present research, the fabrication of biopolymers by using NM is addressed. Changes in the plasticizer (sorbitol and cellulose) concentration, in addition to the implementation of two sources of starch (corn starch (CS) and potato starch (PS)) to obtain the surgical thread, were analyzed. The NM extracted was close to 14% with ethanol. During the characterization of the extract, properties such as moisture, humidity, viscosity, and functional groups, among others, were determined. In the CS and PS analysis, different structures of the polymeric chains were observed. BP degradation with different solvents was performed. Additionally, the addition of sorbitol and cellulose for the BP mixtures presenting the highest resistance to solvent degradation and less solubility to water was conducted. The obtained thread had a uniform diameter, good elasticity, and low capillarity compared to other prototypes reported in the literature.
ABSTRACT
Galena is the most important mineral for lead production, as it is the main source of lead in the world. Currently, the concentrates of this mineral are mainly treated using pyrometallurgical methods, creating several environmental problems, such as the generation of toxic and greenhouse gases. In addition, these processes involve high energy consumption, which limits their applicability. Hydrometallurgical routes are proposed as alternative processes for obtaining some metals such as silver, copper, gold, etc. The drawback of these processes is that the minerals tend to be passive in aqueous media. To mitigate this issue, researchers have used extreme conditions of pressure and temperature (6 atm. and 155 °C) or the use of very corrosive conditions. In this sense, the use of complexing agents that dissolve the metals of interest has been proposed. Citrate ion is one of the most promising complexing agents for galena leaching, obtaining high percentages of dissolution in relatively short times. Unfortunately, there has not been enough investigation about the concentration optimization of the complexing in the pH range from 5 to 9. In this sense, thermodynamic diagrams, such as the Pourbaix diagrams, are very useful for this purpose. Therefore, in this work, the effects of pH and temperature on the leaching of galena in citrate ion solutions are studied thermodynamically and experimentally. The experimental work was carried out with pure galena samples with a particle size of +149 - 74 µm (-100 + 200 mesh). The results show that higher recoveries were obtained working at a pH of 8 and at temperatures of 30 and 40 °C. The thermodynamic and experimental data demonstrated that the existence of an optimal concentration of citrate ion, due the extraction of lead from galena, has a greater reaction rate at a relatively low initial concentration of 0.3 M. This is due the formation of the complex lead citrate 1 (Pb(cit)-).
ABSTRACT
The discharge of large amounts of effluents contaminated with gentian violet (GV) and phenol red (PR) threatens aquatic flora and fauna as well as human health, which is why these effluents must be treated before being discarded. This study seeks the removal of dyes, using water lily (Eichhornia crassipes) as an adsorbent with different pretreatments. PR and GV were analyzed by a UV-visible spectrophotometer. Equilibrium experimental data showed that Freundlich is the best model to fit PR and SIPS for GV, showing that the adsorption process for both dyes was heterogeneous, favorable, chemical (for GV), and physical (for PR). The thermodynamic analysis for the adsorption process of both dyes depends directly on the increase in temperature and is carried out spontaneously. The Pseudo first Order (PFO) kinetic model for GV and PR is the best fit for the dyes having an adsorption capacity of 91 and 198 mg/g, respectively. The characterization of the materials demonstrated significant changes in the bands of lignin, cellulose, and hemicellulose, which indicates that the functional groups could participate in the capture of the dyes together with the electrostatic forces of the medium, from which it be concluded that the adsorption process is carried out by several mechanisms.