Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 469, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551733

ABSTRACT

BACKGROUND: The behavior of Abscisic acid (ABA) as a stress phytohormone may be involved in mechanisms leading to tolerance and survival in adverse environmental conditions such as drought stress. METHODS: Here, we evaluated ABA-mediated responses at physio-biochemical and molecular levels in drought-stressed seedlings of two different Desi-type chickpea genotypes (10 as a tolerant genotype and 247 as a sensitive one). RESULTS: Under drought stress, two chickpea genotypes showed a decrease in their relative water content (RWC), and the intense decrease was related to the sensitive genotype (73.9%) in severe stress. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) concomitant with the severity of stress increased in genotypes and the higher increase was in the sensitive genotype (5.8-fold and 3.43-fold, respectively). In the tolerant genotype, the enhanced accumulation of total phenolic content (1.75-fold) and radical scavenging action, based on 1,1-diphenyl-2-picrylhydrazyl test (DPPH), (1.69-fold) were simultaneous with ABA accumulation (1.53-fold). In the tolerant genotype, transcriptional analysis presented upregulation of Zeaxanthin epoxidase (ZEP) (1.35-fold), 9-cis-epoxycarotenoid dioxygenase (NCED) (5.16-fold), and Abscisic aldehyde oxidase (AAO) (1.52-fold compared to control conditions) genes in severe stress in comparison with mild stress. The sensitive genotype had a declining trend in total chlorophyll (up to 70%) and carotenoid contents (36%). The main conclusion to be drawn from this investigation is that ABA with its regulatory effects can affect drought tolerance mechanisms to alleviate adverse effects of unsatisfactory environmental conditions. CONCLUSIONS: In this paper, we tried to indicate that drought stress induces overexpression of genes triggering ABA-mediated drought responses simultaneously in two genotypes while more increment expression was related to the tolerant genotype. At first thought, it seems that the tolerant genotype compared to the sensitive genotype has a genetically inherent ability to cope with and drop adverse effects of drought stress through over-accumulation of ABA as drought.


Subject(s)
Cicer , Cicer/genetics , Cicer/metabolism , Droughts , Hydrogen Peroxide/metabolism , Abscisic Acid/metabolism , Plant Growth Regulators , Stress, Physiological/genetics , Gene Expression Regulation, Plant
2.
Front Plant Sci ; 12: 710867, 2021.
Article in English | MEDLINE | ID: mdl-34484273

ABSTRACT

A well-developed root system benefits host plants by optimizing water absorption and nutrient uptake and thereby increases plant productivity. In this study we have characterized the root transcriptome using RNA-seq and subsequential functional analysis in a set of drought tolerant and susceptible genotypes. The goal of the study was to elucidate and characterize water deficit-responsive genes in wheat landraces that had been through long-term field and biochemical screening for drought tolerance. The results confirm genotype differences in water-deficit tolerance in line with earlier results from field trials. The transcriptomics survey highlighted a total of 14,187 differentially expressed genes (DEGs) that responded to water deficit. The characterization of these genes shows that all chromosomes contribute to water-deficit tolerance, but to different degrees, and the B genome showed higher involvement than the A and D genomes. The DEGs were mainly mapped to flavonoid, phenylpropanoid, and diterpenoid biosynthesis pathways, as well as glutathione metabolism and hormone signaling. Furthermore, extracellular region, apoplast, cell periphery, and external encapsulating structure were the main water deficit-responsive cellular components in roots. A total of 1,377 DEGs were also predicted to function as transcription factors (TFs) from different families regulating downstream cascades. TFs from the AP2/ERF-ERF, MYB-related, B3, WRKY, Tify, and NAC families were the main genotype-specific regulatory factors. To further characterize the dynamic biosynthetic pathways, protein-protein interaction (PPI) networks were constructed using significant KEGG proteins and putative TFs. In PPIs, enzymes from the CYP450, TaABA8OH2, PAL, and GST families play important roles in water-deficit tolerance in connection with MYB13-1, MADS-box, and NAC transcription factors.

3.
BMC Plant Biol ; 19(1): 541, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31805861

ABSTRACT

BACKGROUND: Identification of loci for agronomic traits and characterization of their genetic architecture are crucial in marker-assisted selection (MAS). Genome-wide association studies (GWAS) have increasingly been used as potent tools in identifying marker-trait associations (MTAs). The introduction of new adaptive alleles in the diverse genetic backgrounds may help to improve grain yield of old or newly developed varieties of wheat to balance supply and demand throughout the world. Landraces collected from different climate zones can be an invaluable resource for such adaptive alleles. RESULTS: GWAS was performed using a collection of 298 Iranian bread wheat varieties and landraces to explore the genetic basis of agronomic traits during 2016-2018 cropping seasons under normal (well-watered) and stressed (rain-fed) conditions. A high-quality genotyping by sequencing (GBS) dataset was obtained using either all original single nucleotide polymorphism (SNP, 10938 SNPs) or with additional imputation (46,862 SNPs) based on W7984 reference genome. The results confirm that the B genome carries the highest number of significant marker pairs in both varieties (49,880, 27.37%) and landraces (55,086, 28.99%). The strongest linkage disequilibrium (LD) between pairs of markers was observed on chromosome 2D (0.296). LD decay was lower in the D genome, compared to the A and B genomes. Association mapping under two tested environments yielded a total of 313 and 394 significant (-log10 P >3) MTAs for the original and imputed SNP data sets, respectively. Gene ontology results showed that 27 and 27.5% of MTAs of SNPs in the original set were located in protein-coding regions for well-watered and rain-fed conditions, respectively. While, for the imputed data set 22.6 and 16.6% of MTAs represented in protein-coding genes for the well-watered and rain-fed conditions, respectively. CONCLUSIONS: Our finding suggests that Iranian bread wheat landraces harbor valuable alleles that are adaptive under drought stress conditions. MTAs located within coding genes can be utilized in genome-based breeding of new wheat varieties. Although imputation of missing data increased the number of MTAs, the fraction of these MTAs located in coding genes were decreased across the different sub-genomes.


Subject(s)
Genome-Wide Association Study , Life History Traits , Plant Breeding , Triticum/genetics , Alleles , Iran , Phenotype
4.
Antioxidants (Basel) ; 8(11)2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31766277

ABSTRACT

The aim of this study was to evaluate changes in the chemical profile of essential oils and antioxidant enzymes activity (catalase CAT, superoxide dismutase SOD, Glutathione S-transferases GST, and Peroxidase POX) in Mentha × piperita L. (Mitcham variety) and Mentha arvensis L. (var. piperascens), in response to heat stress. In addition, we used salicylic acid (SA) and melatonin (M), two brassinosteroids that play an important role in regulating physiological processes, to assess their potential to mitigate heat stress. In both species, the heat stress caused a variation in the composition of the essential oils and in the antioxidant enzymatic activity. Furthermore both Salicylic acid (SA) and melatonin (M) alleviated the effect of heat stress.

5.
Molecules ; 23(8)2018 Jul 30.
Article in English | MEDLINE | ID: mdl-30061551

ABSTRACT

Heat stress affects the yield of medicinal plants and can reduce biomass and/or metabolite production. In order to evaluate the effect of heat-induced stress on the essential oil production in Mentha x piperita L. var. Mitcham (Mitcham mint) and Mentha arvensis var. piperascens Malinv. ex L. H. Bailey (Japanese mint), we studied the chemical composition of the oils of the two mint species under different heat shock stresses in growth chambers. The antibacterial activity of the essential oils was also evaluated; microscopic observation (fluorescence and electron transmission) was used to assess the effect of the tested samples on bacterial growth. The results obtained shed light on the mint essential oils composition and biological activity in relation to heat stress.


Subject(s)
Anti-Bacterial Agents/pharmacology , Mentha piperita/chemistry , Mentha/chemistry , Monoterpenes/pharmacology , Oils, Volatile/pharmacology , Sesquiterpenes/pharmacology , Anti-Bacterial Agents/isolation & purification , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Hot Temperature , Mentha/metabolism , Mentha piperita/metabolism , Microbial Sensitivity Tests , Monoterpenes/classification , Monoterpenes/isolation & purification , Oils, Volatile/isolation & purification , Plant Extracts/chemistry , Sesquiterpenes/classification , Sesquiterpenes/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/growth & development , Stress, Physiological
6.
Protein Pept Lett ; 19(8): 880-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22762188

ABSTRACT

Proteomics techniques were used to identify the underlying mechanism of the early stage of symbiosis between the common bean (Phaseolus vulgaris L.) and bacteria. Proteins from roots of common beans inoculated with bacteria were separated using two-dimensional polyacrylamide gel electrophoresis and identified using mass spectrometry. From 483 protein spots, 29 plant and 3 bacterial proteins involved in the early stage of symbiosis were identified. Of the 29 plant proteins, the expression of 19 was upregulated and the expression of 10 was downregulated. Upregulated proteins included those involved in protein destination/storage, energy production, and protein synthesis; whereas the downregulated proteins included those involved in metabolism. Many upregulated proteins involved in protein destination/storage were chaperonins and proteasome subunits. These results suggest that defense mechanisms associated with induction of chaperonins and protein degradation regulated by proteasomes occur during the early stage of symbiosis between the common bean and bacteria.


Subject(s)
Phaseolus/metabolism , Plant Roots , Proteome/analysis , Rhizobium etli , Electrophoresis, Gel, Two-Dimensional , Gene Expression Regulation, Plant/genetics , Mass Spectrometry , Plant Proteins/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Rhizobium etli/genetics , Rhizobium etli/metabolism , Symbiosis/genetics
7.
J Proteomics ; 75(3): 819-32, 2012 Jan 04.
Article in English | MEDLINE | ID: mdl-22005398

ABSTRACT

To reveal the processes involved in the early stages of symbiosis between soybean plants and root nodule bacteria, we conducted a proteomic analysis of the response to bacterial inoculation in the roots of supernodulating (En-b0-1) and non-nodulating (En1282) varieties, and their parental normal-nodulating variety (Enrei). A total of 56 proteins were identified from 48 differentially expressed protein spots in normal-nodulating variety after bacterial inoculation. Among 56 proteins, metabolism- and energy production-related proteins were upregulated in supernodulating and downregulated in non-nodulating varieties compared to normal-nodulating variety. The supernodulating and non-nodulating varieties responded oppositely to bacterial inoculation with respect to the expression of 11 proteins. Seven proteins of these proteins was downregulated in supernodulating varieties compared to non-nodulating variety, but expression of proteasome subunit alpha type 6, gamma glutamyl hydrolase, glucan endo-1,3-beta glucosidase, and nodulin 35 was upregulated. The expression of seven proteins mirrored the degree of nodule formation. At the transcript level, expression of stem 31kDa glycoprotein, leucine aminopeptidase, phosphoglucomutase, and peroxidase was downregulated in the supernodulating variety compared to the non-nodulating variety, and their expression in the normal-nodulating variety was intermediate. These results suggest that suppression of the autoregulatory mechanism in the supernodulating variety might be due to negative regulation of defense and signal transduction-related processes.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/biosynthesis , Gene Expression Regulation, Bacterial/physiology , Glycine max/microbiology , Plant Roots/microbiology , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL