Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
JAMA Neurol ; 78(11): 1355-1366, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34515766

ABSTRACT

Importance: Cerebrospinal fluid (CSF) cytologic testing and flow cytometry are insensitive for diagnosing neoplasms of the central nervous system (CNS). Such clinical phenotypes can mimic infectious and autoimmune causes of meningoencephalitis. Objective: To ascertain whether CSF metagenomic next-generation sequencing (mNGS) can identify aneuploidy, a hallmark of malignant neoplasms, in difficult-to-diagnose cases of CNS malignant neoplasm. Design, Setting, and Participants: Two case-control studies were performed at the University of California, San Francisco (UCSF). The first study used CSF specimens collected at the UCSF Clinical Laboratories between July 1, 2017, and December 31, 2019, and evaluated test performance in specimens from patients with a CNS malignant neoplasm (positive controls) or without (negative controls). The results were compared with those from CSF cytologic testing and/or flow cytometry. The second study evaluated patients who were enrolled in an ongoing prospective study between April 1, 2014, and July 31, 2019, with presentations that were suggestive of neuroinflammatory disease but who were ultimately diagnosed with a CNS malignant neoplasm. Cases of individuals whose tumors could have been detected earlier without additional invasive testing are discussed. Main Outcomes and Measures: The primary outcome measures were the sensitivity and specificity of aneuploidy detection by CSF mNGS. Secondary subset analyses included a comparison of CSF and tumor tissue chromosomal abnormalities and the identification of neuroimaging characteristics that were associated with test performance. Results: Across both studies, 130 participants were included (median [interquartile range] age, 57.5 [43.3-68.0] years; 72 men [55.4%]). The test performance study used 125 residual laboratory CSF specimens from 47 patients with a CNS malignant neoplasm and 56 patients with other neurological diseases. The neuroinflammatory disease study enrolled 12 patients and 17 matched control participants. The sensitivity of the CSF mNGS assay was 75% (95% CI, 63%-85%), and the specificity was 100% (95% CI, 96%-100%). Aneuploidy was detected in 64% (95% CI, 41%-83%) of the patients in the test performance study with nondiagnostic cytologic testing and/or flow cytometry, and in 55% (95% CI, 23%-83%) of patients in the neuroinflammatory disease study who were ultimately diagnosed with a CNS malignant neoplasm. Of the patients in whom aneuploidy was detected, 38 (90.5%) had multiple copy number variations with tumor fractions ranging from 31% to 49%. Conclusions and Relevance: This case-control study showed that CSF mNGS, which has low specimen volume requirements, does not require the preservation of cell integrity, and was orginally developed to diagnose neurologic infections, can also detect genetic evidence of a CNS malignant neoplasm in patients in whom CSF cytologic testing and/or flow cytometry yielded negative results with a low risk of false-positive results.


Subject(s)
Biomarkers, Tumor/cerebrospinal fluid , Central Nervous System Neoplasms/cerebrospinal fluid , Central Nervous System Neoplasms/diagnosis , High-Throughput Nucleotide Sequencing/methods , Adult , Aged , Case-Control Studies , Female , Humans , Male , Metagenomics , Middle Aged , Sensitivity and Specificity , Sequence Analysis, DNA/methods
2.
Genome Med ; 13(1): 98, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34074327

ABSTRACT

BACKGROUND: Metagenomic next-generation sequencing (mNGS) of body fluids is an emerging approach to identify occult pathogens in undiagnosed patients. We hypothesized that metagenomic testing can be simultaneously used to detect malignant neoplasms in addition to infectious pathogens. METHODS: From two independent studies (n = 205), we used human data generated from a metagenomic sequencing pipeline to simultaneously screen for malignancies by copy number variation (CNV) detection. In the first case-control study, we analyzed body fluid samples (n = 124) from patients with a clinical diagnosis of either malignancy (positive cases, n = 65) or infection (negative controls, n = 59). In a second verification cohort, we analyzed a series of consecutive cases (n = 81) sent to cytology for malignancy workup that included malignant positives (n = 32), negatives (n = 18), or cases with an unclear gold standard (n = 31). RESULTS: The overall CNV test sensitivity across all studies was 87% (55 of 63) in patients with malignancies confirmed by conventional cytology and/or flow cytometry testing and 68% (23 of 34) in patients who were ultimately diagnosed with cancer but negative by conventional testing. Specificity was 100% (95% CI 95-100%) with no false positives detected in 77 negative controls. In one example, a patient hospitalized with an unknown pulmonary illness had non-diagnostic lung biopsies, while CNVs implicating a malignancy were detectable from bronchoalveolar fluid. CONCLUSIONS: Metagenomic sequencing of body fluids can be used to identify undetected malignant neoplasms through copy number variation detection. This study illustrates the potential clinical utility of a single metagenomic test to uncover the cause of undiagnosed acute illnesses due to cancer or infection using the same specimen.


Subject(s)
Body Fluids , Liquid Biopsy/methods , Metagenome , Metagenomics/methods , Neoplasms/diagnosis , Neoplasms/etiology , Body Fluids/microbiology , Case-Control Studies , Computational Biology/methods , Cytogenetic Analysis , Disease Management , Disease Susceptibility , Flow Cytometry , Histocytochemistry , Humans , In Situ Hybridization, Fluorescence , Liquid Biopsy/standards , Metagenomics/standards , Neoplasms/metabolism , Reproducibility of Results , Sensitivity and Specificity
3.
Cell Rep ; 29(3): 573-588.e7, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31618628

ABSTRACT

BRAF fusions are detected in numerous neoplasms, but their clinical management remains unresolved. We identified six melanoma lines harboring BRAF fusions representative of the clinical cases reported in the literature. Their unexpected heterogeneous responses to RAF and MEK inhibitors could be categorized upon specific features of the fusion kinases. Higher expression level correlated with resistance, and fusion partners containing a dimerization domain promoted paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway and hyperproliferation in response to first- and second-generation RAF inhibitors. By contrast, next-generation αC-IN/DFG-OUT RAF inhibitors blunted paradoxical activation across all lines and had their therapeutic efficacy further increased in vitro and in vivo by combination with MEK inhibitors, opening perspectives in the clinical management of tumors harboring BRAF fusions.


Subject(s)
Drug Resistance, Neoplasm/genetics , Melanoma/pathology , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins B-raf/genetics , Animals , Dimerization , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Intracellular Signaling Peptides and Proteins/genetics , Melanoma/genetics , Mice , Mice, Nude , Mitogen-Activated Protein Kinases/metabolism , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Kinase Inhibitors/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction , Vemurafenib/pharmacology , ras Proteins/genetics , ras Proteins/metabolism
4.
J Pathol ; 248(2): 164-178, 2019 06.
Article in English | MEDLINE | ID: mdl-30690729

ABSTRACT

Combined hepatocellular-cholangiocarcinomas (CHC) are mixed tumours with both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) components. CHC prognosis is similar to intrahepatic CC (ICC) and worse than HCC; staging and treatment generally follow ICC algorithms. However, the molecular biology of CHC remains poorly characterised. We performed capture-based next-generation sequencing of 20 CHC and, for comparison, 10 ICC arising in cirrhosis. Intratumour heterogeneity was assessed by separately sequencing the HCC and CC components of nine CHC. CHC demonstrated molecular profiles similar to HCC, even in the CC component. CHC harboured recurrent alterations in TERT (80%), TP53 (80%), cell cycle genes (40%; CCND1, CCNE1, CDKN2A), receptor tyrosine kinase/Ras/PI3-kinase pathway genes (55%; MET, ERBB2, KRAS, PTEN), chromatin regulators (20%; ARID1A, ARID2) and Wnt pathway genes (20%; CTNNB1, AXIN, APC). No CHC had alterations in IDH1, IDH2, FGFR2 or BAP1, genes typically mutated in ICC. TERT promoter mutations were consistently identified in both HCC and CC components, supporting TERT alteration as an early event in CHC evolution. TP53 mutations were present in both components in slightly over half the TP53-altered cases. By contrast, focal amplifications of CCND1, MET and ERRB2, as well as Wnt pathway alterations, were most often exclusive to one component, suggesting that these are late events in CHC evolution. ICC in cirrhosis demonstrated alterations similar to ICC in non-cirrhotic liver, including in IDH1 or IDH2 (30%), CDKN2A (40%), FGFR2 (20%), PBRM1 (20%), ARID1A (10%) and BAP1 (10%). TERT promoter and TP53 mutation were present in only one ICC each. Our data demonstrate that CHC genetics are distinct from ICC (even in cirrhosis) and similar to HCC, which has diagnostic utility and implications for treatment. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Cholangiocarcinoma/genetics , Gene Expression Profiling , Liver Neoplasms/genetics , Neoplasms, Complex and Mixed/genetics , Transcriptome , Adult , Aged , Carcinoma, Hepatocellular/pathology , Cholangiocarcinoma/pathology , Female , Gene Dosage , Gene Rearrangement , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Liver Neoplasms/pathology , Male , Middle Aged , Mutation , Neoplasms, Complex and Mixed/pathology
5.
Pigment Cell Melanoma Res ; 32(2): 269-279, 2019 03.
Article in English | MEDLINE | ID: mdl-30156010

ABSTRACT

The deubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with a high risk of mesothelioma and melanocytic tumors. Here, we show that Bap1 deletion in melanocytes cooperates with the constitutively active, oncogenic form of BRAF (BRAFV600E ) and UV to cause melanoma in mice, albeit at very low frequency. In addition, Bap1-null melanoma cells derived from mouse tumors are more aggressive and colonize and grow at distant sites more than their wild-type counterparts. Molecularly, Bap1-null melanoma cell lines have increased DNA damage measured by γH2aX and hyperubiquitination of histone H2a. Therapeutically, these Bap1-null tumors are completely responsive to BRAF- and MEK-targeted therapies. Therefore, BAP1 functions as a tumor suppressor and limits tumor progression in melanoma.


Subject(s)
Carcinogenesis/genetics , Carcinogenesis/pathology , Melanoma/genetics , Melanoma/pathology , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , DNA Damage , Epithelial-Mesenchymal Transition/genetics , Gene Deletion , Gene Expression Regulation, Neoplastic , Histones/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Melanocytes/metabolism , Melanocytes/pathology , Mice, Inbred C57BL , Mice, Knockout , Transcription, Genetic , Ubiquitination , Melanoma, Cutaneous Malignant
6.
Nat Commun ; 9(1): 810, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476136

ABSTRACT

Chordoid glioma is a rare brain tumor thought to arise from specialized glial cells of the lamina terminalis along the anterior wall of the third ventricle. Despite being histologically low-grade, chordoid gliomas are often associated with poor outcome, as their stereotypic location in the third ventricle makes resection challenging and efficacious adjuvant therapies have not been developed. Here we performed genomic profiling on 13 chordoid gliomas and identified a recurrent D463H missense mutation in PRKCA in all tumors, which localizes in the kinase domain of the encoded protein kinase C alpha (PKCα). Expression of mutant PRKCA in immortalized human astrocytes led to increased phospho-ERK and anchorage-independent growth that could be blocked by MEK inhibition. These studies define PRKCA as a recurrently mutated oncogene in human cancer and identify a potential therapeutic vulnerability in this uncommon brain tumor.


Subject(s)
Cerebral Ventricle Neoplasms/enzymology , Glioma/enzymology , Protein Kinase C-alpha/chemistry , Protein Kinase C-alpha/genetics , Third Ventricle/enzymology , Adult , Aged , Cerebral Ventricle Neoplasms/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Glioma/genetics , Humans , Male , Middle Aged , Mutation, Missense , Phosphorylation , Protein Domains , Protein Kinase C-alpha/metabolism
7.
Mod Pathol ; 31(4): 660-673, 2018 04.
Article in English | MEDLINE | ID: mdl-29148537

ABSTRACT

Adenomatoid tumors are the most common neoplasm of the epididymis, and histologically similar adenomatoid tumors also commonly arise in the uterus and fallopian tube. To investigate the molecular pathogenesis of these tumors, we performed genomic profiling on a cohort of 31 adenomatoid tumors of the male and female genital tracts. We identified that all tumors harbored somatic missense mutations in the TRAF7 gene, which encodes an E3 ubiquitin ligase belonging to the family of tumor necrosis factor receptor-associated factors (TRAFs). These mutations all clustered into one of five recurrent hotspots within the WD40 repeat domains at the C-terminus of the protein. Functional studies in vitro revealed that expression of mutant but not wild-type TRAF7 led to increased phosphorylation of nuclear factor-kappa B (NF-kB) and increased expression of L1 cell adhesion molecule (L1CAM), a marker of NF-kB pathway activation. Immunohistochemistry demonstrated robust L1CAM expression in adenomatoid tumors that was absent in normal mesothelial cells, malignant peritoneal mesotheliomas and multilocular peritoneal inclusion cysts. Together, these studies demonstrate that adenomatoid tumors of the male and female genital tract are genetically defined by TRAF7 mutation that drives aberrant NF-kB pathway activation.


Subject(s)
Adenomatoid Tumor/genetics , Genital Neoplasms, Female/genetics , Genital Neoplasms, Male/genetics , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Adenomatoid Tumor/metabolism , Adenomatoid Tumor/pathology , Adult , Aged , Female , Genital Neoplasms, Female/metabolism , Genital Neoplasms, Female/pathology , Genital Neoplasms, Male/metabolism , Genital Neoplasms, Male/pathology , Humans , Male , Middle Aged , Mutation, Missense , NF-kappa B/metabolism , Signal Transduction/physiology
8.
Clin Cancer Res ; 23(20): 6070-6077, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28751446

ABSTRACT

Purpose: Precise detection of copy number aberrations (CNA) from tumor biopsies is critically important to the treatment of metastatic prostate cancer. The use of targeted panel next-generation sequencing (NGS) is inexpensive, high throughput, and easily feasible, allowing single-nucleotide variant calls, but CNA estimation from this remains challenging.Experimental Design: We evaluated CNVkit for CNA identification from amplicon-based targeted NGS in a cohort of 110 fresh castration-resistant prostate cancer biopsies and used capture-based whole-exome sequencing (WES), array comparative genomic hybridization (aCGH), and FISH to explore the viability of this approach.Results: We showed that this method produced highly reproducible CNA results (r = 0.92), with the use of pooled germline DNA as a coverage reference supporting precise CNA estimation. CNA estimates from targeted NGS were comparable with WES (r = 0.86) and aCGH (r = 0.7); for key selected genes (BRCA2, MYC, PIK3CA, PTEN, and RB1), CNA estimation correlated well with WES (r = 0.91) and aCGH (r = 0.84) results. The frequency of CNAs in our population was comparable with that previously described (i.e., deep deletions: BRCA2 4.5%; RB1 8.2%; PTEN 15.5%; amplification: AR 45.5%; gain: MYC 31.8%). We also showed, utilizing FISH, that CNA estimation can be impacted by intratumor heterogeneity and demonstrated that tumor microdissection allows NGS to provide more precise CNA estimates.Conclusions: Targeted NGS and CNVkit-based analyses provide a robust, precise, high-throughput, and cost-effective method for CNA estimation for the delivery of more precise patient care. Clin Cancer Res; 23(20); 6070-7. ©2017 AACR.


Subject(s)
DNA Copy Number Variations , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , BRCA2 Protein/genetics , Biomarkers, Tumor , Biopsy , Comparative Genomic Hybridization , Computational Biology/methods , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing , Humans , Male , Reproducibility of Results , Exome Sequencing
9.
Mod Pathol ; 30(8): 1086-1099, 2017 08.
Article in English | MEDLINE | ID: mdl-28548128

ABSTRACT

Secretory carcinomas of the breast are rare tumors with distinct histologic features, recurrent t(12;15)(p13;q25) translocation resulting in ETV6-NTRK3 gene fusion and indolent clinical behavior. Mammary analog secretory carcinomas arising in other sites are histopathologically similar to the breast tumors and also harbor ETV6-NTRK3 fusions. Breast secretory carcinomas are often triple (estrogen and progesterone receptor, HER2) negative with a basal-like immunophenotype. However, genomic studies are lacking, and whether these tumors share genetic features with other basal and/or triple negative breast cancers is unknown. Aside from shared ETV6-NTRK3 fusions, the genetic relatedness of secretory carcinomas arising in different sites is also uncertain. We immunoprofiled and sequenced 510 cancer-related genes in nine breast secretory carcinomas and six salivary gland mammary analog secretory carcinomas. Immunoprofiles of breast and salivary gland secretory carcinomas were similar. All the tumors showed strong diffuse MUC4 expression (n=15), and SOX10 was positive in all nine breast and in five out of six salivary gland tumors. All breast secretory carcinomas were triple negative or weakly ER-positive, and all tumors at both the sites expressed CK5/6 and/or EGFR, consistent with a basal-like phenotype. Sequencing revealed classic ETV6-NTRK3 fusion genes in all cases, including in carcinoma in situ of one breast tumor. Translocations were reciprocal and balanced in six out of nine breast and three out of six salivary gland tumors and were complex in three others. In contrast to most breast basal carcinomas, the mutational burden of secretory carcinomas was very low, and no additional pathogenic aberrations were identified in genes typically mutated in breast cancer. Five (56%) breast and two (33%) salivary gland tumors had simple genomes without copy number changes; the remainder had very few changes, averaging 1.3 per tumor. The ETV6-NTRK3 derivative chromosome was duplicated in one breast and one salivary gland tumor, and was the only copy number change in the latter. The findings highlight breast secretory carcinoma as a subtype more closely related to mammary analog secretory carcinoma than to basal/triple negative breast cancers of no special type. Lack of pathogenic mutations in common cancer-related genes suggests that ETV6-NTRK3 alone may suffice to drive these tumors and likely helps explain their indolent behavior.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Mammary Analogue Secretory Carcinoma/genetics , Adolescent , Adult , Aged , Breast Neoplasms/pathology , Female , Gene Expression Profiling , Humans , Male , Mammary Analogue Secretory Carcinoma/pathology , Middle Aged , Oncogene Proteins, Fusion/genetics , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/pathology , Young Adult
10.
Neuro Oncol ; 19(5): 699-709, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28453743

ABSTRACT

Background: Molecular profiling is revolutionizing cancer diagnostics and leading to personalized therapeutic approaches. Herein we describe our clinical experience performing targeted sequencing for 31 pediatric neuro-oncology patients. Methods: We sequenced 510 cancer-associated genes from tumor and peripheral blood to identify germline and somatic mutations, structural variants, and copy number changes. Results: Genomic profiling was performed on 31 patients with tumors including 11 high-grade gliomas, 8 medulloblastomas, 6 low-grade gliomas, 1 embryonal tumor with multilayered rosettes, 1 pineoblastoma, 1 uveal ganglioneuroma, 1 choroid plexus carcinoma, 1 chordoma, and 1 high-grade neuroepithelial tumor. In 25 cases (81%), results impacted patient management by: (i) clarifying diagnosis, (ii) identifying pathogenic germline mutations, or (iii) detecting potentially targetable alterations. The pathologic diagnosis was amended after genomic profiling for 6 patients (19%), including a high-grade glioma to pilocytic astrocytoma, medulloblastoma to pineoblastoma, ependymoma to high-grade glioma, and medulloblastoma to CNS high-grade neuroepithelial tumor with BCOR alteration. Multiple patients had pathogenic germline mutations, many of which were previously unsuspected. Potentially targetable alterations were identified in 19 patients (61%). Additionally, novel likely pathogenic alterations were identified in 3 cases: an in-frame RAF1 fusion in a BRAF wild-type pleomorphic xanthoastrocytoma, an inactivating ASXL1 mutation in a histone H3 wild-type diffuse pontine glioma, and an in-frame deletion within exon 2 of MAP2K1 in a low-grade astrocytic neoplasm. Conclusions: Our experience demonstrates the significant impact of molecular profiling on diagnosis and treatment of pediatric brain tumors and confirms its feasibility for use at the time of diagnosis or recurrence.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/drug therapy , Germ-Line Mutation , High-Throughput Nucleotide Sequencing/methods , Molecular Targeted Therapy , Adolescent , Adult , Brain Neoplasms/classification , Brain Neoplasms/genetics , Child , Child, Preschool , Female , Humans , Infant , Male , Prognosis , Young Adult
11.
Mod Pathol ; 30(2): 246-254, 2017 02.
Article in English | MEDLINE | ID: mdl-27813512

ABSTRACT

Malignant mesothelioma is a rare cancer that arises from the mesothelial cells that line the pleural cavity and less commonly from the peritoneal lining of the abdomen and pelvis. Most pleural mesotheliomas arise in patients with a history of asbestos exposure, whereas the association of peritoneal mesotheliomas with exposure to asbestos and other potential carcinogens is less clear, suggesting that the genetic alterations that drive malignant peritoneal mesothelioma may be unique from those in pleural mesothelioma. Treatment options for all malignant mesotheliomas are currently limited, with no known targeted therapies available. To better understand the molecular pathogenesis of malignant peritoneal mesothelioma, we sequenced 510 cancer-related genes in 13 patients with malignant mesothelioma arising in the peritoneal cavity. The most frequent genetic alteration was biallelic inactivation of the BAP1 gene, which occurred in 9/13 cases, with an additional two cases demonstrating monoallelic loss of BAP1. All 11 of these cases demonstrated loss of BAP1 nuclear staining by immunohistochemistry, whereas two tumors without BAP1 alteration and all 42 cases of histologic mimics in peritoneum (8 multilocular peritoneal inclusion cyst, 6 well-differentiated papillary mesothelioma of the peritoneum, 16 adenomatoid tumor, and 12 low-grade serous carcinoma of the ovary) demonstrated intact BAP1 nuclear staining. Additional recurrently mutated genes in this cohort of malignant peritoneal mesotheliomas included NF2 (3/13), SETD2 (2/13), and DDX3X (2/13). While these genes are known to be recurrently mutated in pleural mesotheliomas, the frequencies are distinct in peritoneal mesotheliomas, with nearly 85% of peritoneal tumors harboring BAP1 alterations versus only 20-30% of pleural tumors. Together, these findings demonstrate the importance of epigenetic modifiers including BAP1, SETD2, and DDX3X in mesothelial tumorigenesis and suggest opportunities for targeted therapies.


Subject(s)
DEAD-box RNA Helicases/genetics , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/genetics , Lung Neoplasms/genetics , Mesothelioma/genetics , Peritoneal Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Aged , Aged, 80 and over , Carcinogenesis/genetics , Carcinogenesis/pathology , Female , Gene Expression Profiling , Humans , Lung Neoplasms/pathology , Male , Mesothelioma/pathology , Mesothelioma, Malignant , Middle Aged , Peritoneal Neoplasms/pathology , Young Adult
12.
Mod Pathol ; 29(9): 1012-27, 2016 09.
Article in English | MEDLINE | ID: mdl-27255162

ABSTRACT

Malignant phyllodes tumors of the breast are poorly understood rare neoplasms with potential for aggressive behavior. Few efficacious treatment options exist for progressed or metastatic disease. The molecular features of malignant phyllodes tumors are poorly defined, and a deeper understanding of the genetics of these tumors may shed light on pathogenesis and progression and potentially identify novel treatment approaches. We sequenced 510 cancer-related genes in 10 malignant phyllodes tumors, including 5 tumors with liposarcomatous differentiation and 1 with myxoid chondrosarcoma-like differentiation. Intratumoral heterogeneity was assessed by sequencing two separate areas in 7 tumors, including non-heterologous and heterologous components of tumors with heterologous differentiation. Activating hotspot mutations in FGFR1 were identified in 2 tumors. Additional recurrently mutated genes included TERT promoter (6/10), TP53 (4/10), PIK3CA (3/10), MED12 (3/10), SETD2 (2/10) and KMT2D (2/10). Together, genomic aberrations in FGFR/EGFR PI-3 kinase and RAS pathways were identified in 8 (80%) tumors and included mutually exclusive and potentially actionable activating FGFR1, PIK3CA and BRAF V600E mutations, inactivating TSC2 mutation, EGFR amplification and PTEN loss. Seven (70%) malignant phyllodes tumors harbored TERT aberrations (six promoter mutations, one amplification). For comparison, TERT promoter mutations were identified by Sanger sequencing in 33% borderline (n=12) and no (0%, n=8) benign phyllodes tumors (P=0.391 and P=0.013 vs malignant tumors, respectively). Genetic features specific to liposarcoma, including CDK4/MDM2 amplification, were not identified. Copy number analysis revealed intratumoral heterogeneity and evidence for divergent tumor evolution in malignant phyllodes tumors with and without heterologous differentiation. Tumors with liposarcomatous differentiation revealed more chromosomal aberrations in non-heterologous components compared with liposarcomatous components. EGFR amplification was heterogeneous and present only in the non-heterologous component of one tumor with liposarcomatous differentiation. The results identify novel pathways involved in the pathogenesis of malignant phyllodes tumors, which significantly increase our understanding of tumor biology and have potential clinical impact.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Gene Expression Profiling/methods , Genes, ras , Phyllodes Tumor/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction/genetics , Adult , Aged , Aged, 80 and over , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Differentiation , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , Middle Aged , Mutation , Phenotype , Phyllodes Tumor/enzymology , Phyllodes Tumor/pathology , San Francisco , Transcriptome , Young Adult
13.
PLoS Comput Biol ; 12(4): e1004873, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27100738

ABSTRACT

Germline copy number variants (CNVs) and somatic copy number alterations (SCNAs) are of significant importance in syndromic conditions and cancer. Massively parallel sequencing is increasingly used to infer copy number information from variations in the read depth in sequencing data. However, this approach has limitations in the case of targeted re-sequencing, which leaves gaps in coverage between the regions chosen for enrichment and introduces biases related to the efficiency of target capture and library preparation. We present a method for copy number detection, implemented in the software package CNVkit, that uses both the targeted reads and the nonspecifically captured off-target reads to infer copy number evenly across the genome. This combination achieves both exon-level resolution in targeted regions and sufficient resolution in the larger intronic and intergenic regions to identify copy number changes. In particular, we successfully inferred copy number at equivalent to 100-kilobase resolution genome-wide from a platform targeting as few as 293 genes. After normalizing read counts to a pooled reference, we evaluated and corrected for three sources of bias that explain most of the extraneous variability in the sequencing read depth: GC content, target footprint size and spacing, and repetitive sequences. We compared the performance of CNVkit to copy number changes identified by array comparative genomic hybridization. We packaged the components of CNVkit so that it is straightforward to use and provides visualizations, detailed reporting of significant features, and export options for integration into existing analysis pipelines. CNVkit is freely available from https://github.com/etal/cnvkit.


Subject(s)
DNA Copy Number Variations , Software , Comparative Genomic Hybridization/statistics & numerical data , Computational Biology , Genome, Human , Genome-Wide Association Study/statistics & numerical data , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , In Situ Hybridization, Fluorescence/statistics & numerical data , Sequence Analysis, DNA/statistics & numerical data
14.
BMC Evol Biol ; 16: 7, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26738562

ABSTRACT

BACKGROUND: Many prokaryotic kinases that phosphorylate small molecule substrates, such as antibiotics, lipids and sugars, are evolutionarily related to Eukaryotic Protein Kinases (EPKs). These Eukaryotic-Like Kinases (ELKs) share the same overall structural fold as EPKs, but differ in their modes of regulation, substrate recognition and specificity-the sequence and structural determinants of which are poorly understood. RESULTS: To better understand the basis for ELK specificity, we applied a Bayesian classification procedure designed to identify sequence determinants responsible for functional divergence. This reveals that a large and diverse family of aminoglycoside kinases, characterized members of which are involved in antibiotic resistance, fall into major sub-groups based on differences in putative substrate recognition motifs. Aminoglycoside kinase substrate specificity follows simple rules of alternating hydroxyl and amino groups that is strongly correlated with variations at the DFG + 1 position. CONCLUSIONS: Substrate specificity determining features in small molecule kinases are mostly confined to the catalytic core and can be identified based on quantitative sequence and crystal structure comparisons.


Subject(s)
Protein Kinases/classification , Amino Acid Sequence , Bayes Theorem , Protein Kinases/chemistry , Protein Kinases/metabolism , Protein Structure, Tertiary , Substrate Specificity
15.
N Engl J Med ; 373(20): 1926-36, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26559571

ABSTRACT

BACKGROUND: The pathogenic mutations in melanoma have been largely catalogued; however, the order of their occurrence is not known. METHODS: We sequenced 293 cancer-relevant genes in 150 areas of 37 primary melanomas and their adjacent precursor lesions. The histopathological spectrum of these areas included unequivocally benign lesions, intermediate lesions, and intraepidermal or invasive melanomas. RESULTS: Precursor lesions were initiated by mutations of genes that are known to activate the mitogen-activated protein kinase pathway. Unequivocally benign lesions harbored BRAF V600E mutations exclusively, whereas those categorized as intermediate were enriched for NRAS mutations and additional driver mutations. A total of 77% of areas of intermediate lesions and melanomas in situ harbored TERT promoter mutations, a finding that indicates that these mutations are selected at an unexpectedly early stage of the neoplastic progression. Biallelic inactivation of CDKN2A emerged exclusively in invasive melanomas. PTEN and TP53 mutations were found only in advanced primary melanomas. The point-mutation burden increased from benign through intermediate lesions to melanoma, with a strong signature of the effects of ultraviolet radiation detectable at all evolutionary stages. Copy-number alterations became prevalent only in invasive melanomas. Tumor heterogeneity became apparent in the form of genetically distinct subpopulations as melanomas progressed. CONCLUSIONS: Our study defined the succession of genetic alterations during melanoma progression, showing distinct evolutionary trajectories for different melanoma subtypes. It identified an intermediate category of melanocytic neoplasia, characterized by the presence of more than one pathogenic genetic alteration and distinctive histopathological features. Finally, our study implicated ultraviolet radiation as a major factor in both the initiation and progression of melanoma. (Funded by the National Institutes of Health and others.).


Subject(s)
Evolution, Molecular , Melanoma/genetics , Mutation , Nevus, Pigmented/genetics , Skin Neoplasms/genetics , Ultraviolet Rays/adverse effects , DNA Copy Number Variations , Disease Progression , Humans , Melanoma/pathology , Nevus, Pigmented/pathology , Point Mutation , Sequence Analysis, DNA , Skin Neoplasms/pathology
16.
Nat Genet ; 47(10): 1194-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26343386

ABSTRACT

Desmoplastic melanoma is an uncommon variant of melanoma with sarcomatous histology, distinct clinical behavior and unknown pathogenesis. We performed low-coverage genome and high-coverage exome sequencing of 20 desmoplastic melanomas, followed by targeted sequencing of 293 genes in a validation cohort of 42 cases. A high mutation burden (median of 62 mutations/Mb) ranked desmoplastic melanoma among the most highly mutated cancers. Mutation patterns strongly implicate ultraviolet radiation as the dominant mutagen, indicating a superficially located cell of origin. Newly identified alterations included recurrent promoter mutations of NFKBIE, encoding NF-κB inhibitor ɛ (IκBɛ), in 14.5% of samples. Common oncogenic mutations in melanomas, in particular in BRAF (encoding p.Val600Glu) and NRAS (encoding p.Gln61Lys or p.Gln61Arg), were absent. Instead, other genetic alterations known to activate the MAPK and PI3K signaling cascades were identified in 73% of samples, affecting NF1, CBL, ERBB2, MAP2K1, MAP3K1, BRAF, EGFR, PTPN11, MET, RAC1, SOS2, NRAS and PIK3CA, some of which are candidates for targeted therapies.


Subject(s)
Exome , I-kappa B Proteins/genetics , MAP Kinase Signaling System , Melanoma/genetics , Mutation , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , Humans , Melanoma/enzymology , Melanoma/pathology
17.
Nat Commun ; 6: 7174, 2015 May 27.
Article in English | MEDLINE | ID: mdl-26013381

ABSTRACT

Oncogenic gene fusions have been identified in many cancers and many serve as biomarkers or targets for therapy. Here we identify six different melanocytic tumours with genomic rearrangements of MET fusing the kinase domain of MET in-frame to six different N-terminal partners. These tumours lack activating mutations in other established melanoma oncogenes. We functionally characterize two of the identified fusion proteins (TRIM4-MET and ZKSCAN1-MET) and find that they constitutively activate the mitogen-activated protein kinase (MAPK), phosphoinositol-3 kinase (PI3K) and phospholipase C gamma 1 (PLCγ1) pathways. The MET inhibitors cabozantinib (FDA-approved for progressive medullary thyroid cancer) and PF-04217903 block their activity at nanomolar concentrations. MET fusion kinases thus provide a potential therapeutic target for a rare subset of melanoma for which currently no targeted therapeutic options currently exist.


Subject(s)
Gene Rearrangement , Melanoma, Experimental/genetics , Nevus, Epithelioid and Spindle Cell/genetics , Oncogene Fusion , Proto-Oncogene Proteins c-met/genetics , Adult , Animals , Cell Line , Female , Humans , Male , Mice , Middle Aged
18.
Hum Mutat ; 36(2): 175-86, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25382819

ABSTRACT

Protein kinases represent a large and diverse family of evolutionarily related proteins that are abnormally regulated in human cancers. Although genome sequencing studies have revealed thousands of variants in protein kinases, translating "big" genomic data into biological knowledge remains a challenge. Here, we describe an ontological framework for integrating and conceptualizing diverse forms of information related to kinase activation and regulatory mechanisms in a machine readable, human understandable form. We demonstrate the utility of this framework in analyzing the cancer kinome, and in generating testable hypotheses for experimental studies. Through the iterative process of aggregate ontology querying, hypothesis generation and experimental validation, we identify a novel mutational hotspot in the αC-ß4 loop of the kinase domain and demonstrate the functional impact of the identified variants in epidermal growth factor receptor (EGFR) constitutive activity and inhibitor sensitivity. We provide a unified resource for the kinase and cancer community, ProKinO, housed at http://vulcan.cs.uga.edu/prokino.


Subject(s)
Neoplasms/enzymology , Protein Kinases/genetics , Amino Acid Sequence , Animals , Antineoplastic Agents/pharmacology , CHO Cells , Catalytic Domain , Cricetinae , Cricetulus , Data Mining , Gefitinib , Gene Ontology , Humans , Hydrophobic and Hydrophilic Interactions , Knowledge Bases , Models, Molecular , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinases/chemistry , Quinazolines/pharmacology , Sequence Alignment , Software
19.
PLoS Comput Biol ; 10(4): e1003545, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24743239

ABSTRACT

Cancer is a genetic disease that develops through a series of somatic mutations, a subset of which drive cancer progression. Although cancer genome sequencing studies are beginning to reveal the mutational patterns of genes in various cancers, identifying the small subset of "causative" mutations from the large subset of "non-causative" mutations, which accumulate as a consequence of the disease, is a challenge. In this article, we present an effective machine learning approach for identifying cancer-associated mutations in human protein kinases, a class of signaling proteins known to be frequently mutated in human cancers. We evaluate the performance of 11 well known supervised learners and show that a multiple-classifier approach, which combines the performances of individual learners, significantly improves the classification of known cancer-associated mutations. We introduce several novel features related specifically to structural and functional characteristics of protein kinases and find that the level of conservation of the mutated residue at specific evolutionary depths is an important predictor of oncogenic effect. We consolidate the novel features and the multiple-classifier approach to prioritize and experimentally test a set of rare unconfirmed mutations in the epidermal growth factor receptor tyrosine kinase (EGFR). Our studies identify T725M and L861R as rare cancer-associated mutations inasmuch as these mutations increase EGFR activity in the absence of the activating EGF ligand in cell-based assays.


Subject(s)
Mutation , Neoplasms/enzymology , Oncogenes , Protein Kinases/metabolism , Artificial Intelligence , Humans , Protein Kinases/genetics
20.
J Proteome Res ; 12(9): 4028-45, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23914800

ABSTRACT

During asexual intraerythrocytic development, Plasmodium falciparum diverges from the paradigm of the eukaryotic cell cycles by undergoing multiple rounds of DNA replication and nuclear division without cytokinesis. A better understanding of the molecular switches that coordinate a myriad of events for the progression of the parasite through the intraerythrocytic developmental stages will be of fundamental importance for rational design of intervention strategies. To achieve this goal, we performed isobaric tag-based quantitative proteomics and phosphoproteomics analyses of three developmental stages in the Plasmodium asexual cycle and identified 2767 proteins, 1337 phosphoproteins, and 6293 phosphorylation sites. Approximately 34% of identified proteins and 75% of phosphorylation sites exhibit changes in abundance as the intraerythrocytic cycle progresses. Our study identified 43 distinct phosphorylation motifs and a range of potential MAPK/CDK substrates. Further analysis of phosphorylated kinases identified 30 protein kinases with 126 phosphorylation sites within the kinase domain or in N- or C-terminal tails. Many of these phosphorylations are likely CK2-mediated. We define the constitutive and regulated expression of the Plasmodium proteome during the intraerythrocytic developmental cycle, offering an insight into the dynamics of phosphorylation during asexual cycle progression. Our system-wide comprehensive analysis is a major step toward defining kinase-substrate pairs operative in various signaling networks in the parasite.


Subject(s)
Erythrocytes/parasitology , Plasmodium falciparum/metabolism , Protein Processing, Post-Translational , Proteome/metabolism , Protozoan Proteins/metabolism , Amino Acid Sequence , Cells, Cultured , Humans , Molecular Sequence Data , Phosphoproteins/chemistry , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism , Phosphorylation , Plasmodium falciparum/growth & development , Protein Kinases/chemistry , Protein Kinases/isolation & purification , Protein Kinases/metabolism , Proteome/chemistry , Proteome/isolation & purification , Protozoan Proteins/chemistry , Protozoan Proteins/isolation & purification , Signal Transduction , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...