Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Sci Rep ; 12(1): 21974, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539576

ABSTRACT

microRNAs (miRNAs) serve as novel noninvasive cancer biomarkers. In an HMT-3522 S1 (S1) breast epithelial risk-progression three-dimensional (3D) culture model, non-neoplastic S1 cells form a fully polarized epithelium. When silenced for the gap junction and tumor suppressor Cx43, Cx43-KO-S1 cells recapitulate pre-neoplastic phenotypes observed in tissues at risk for breast cancer in vivo. To delineate the role of miRNAs in breast tumorigenesis and identify key miRNA players in breast epithelial polarity, the miRNA profile specific to Cx43 loss in Cx43-KO-S1 compared to S1 cells was sequenced, revealing 65 differentially expressed miRNAs. A comparative analysis was conducted between these miRNAs and tumor-associated miRNAs from a young Lebanese patient validation cohort. miR-183-5p, downstream of Cx43 loss, was commonly upregulated in the patient cohort and the 3D culture model. miR-492, not attributed to Cx43 loss, was only specifically up-regulated in the young Lebanese patients. Ectopic expression of either miR-183-5p or miR-492 in S1 cells, through pLenti-III-miR-GPF vectors, resulted in the formation of larger multi-layered acini devoid of lumen, with disrupted epithelial polarity, as shown by an altered localization of Cx43, ß-catenin and Scrib, and decreased nuclear circularity in 3D cultures. Enhanced proliferation and invasion capacity were also observed. Over-expression of miR-183-5p or miR-492, therefore, induces pre-neoplastic phenotypes similar to those reported upon Cx43 loss, and may act as oncomiRs and possible biomarkers of increased breast cancer risk.


Subject(s)
Connexin 43 , MicroRNAs , Connexin 43/genetics , Connexin 43/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Genes, Tumor Suppressor , Epithelium/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
2.
Pharmacol Ther ; 237: 108156, 2022 09.
Article in English | MEDLINE | ID: mdl-35150784

ABSTRACT

Breast cancer has the highest cancer incidence rate in women worldwide. Therapies for breast cancer have shown high success rates, yet many cases of recurrence and drug resistance are still reported. Developing innovative strategies for studying breast cancer may improve therapeutic outcomes of the disease by providing better insight into the associated molecular mechanisms. A novel advancement in breast cancer research is the utilization of organ-on-a-chip (OOAC) technology to establish in vitro physiologically relevant breast cancer biomimetic models. This emerging technology combines microfluidics and tissue culturing methods to establish organ-specific micro fabricated culture models. Here, we shed light on the advantages of OOAC platforms over conventional in vivo and in vitro models in terms of mimicking tissue heterogeneity, disease progression, and facilitating pharmacological drug testing with a focus on models of the mammary gland in both normal and breast cancer states. By highlighting the various designs and applications of the breast-on-a-chip platforms, we show that the latter propose means to facilitate breast cancer-related studies and provide an efficient approach for therapeutic drug screening in vitro.


Subject(s)
Breast Neoplasms , Biomimetics/methods , Breast Neoplasms/drug therapy , Drug Evaluation, Preclinical/methods , Female , Humans , Lab-On-A-Chip Devices , Microfluidics/methods
3.
Int J Inflam ; 2021: 4666380, 2021.
Article in English | MEDLINE | ID: mdl-34868543

ABSTRACT

Inflammation is associated with the development of several cancers, including breast cancer. However, the molecular mechanisms driving breast cancer initiation or enhancement by inflammation are yet to be deciphered. Hence, we opted to investigate the role of inflammation in initiating and enhancing tumor-like phenotypes in nontumorigenic, pretumorigenic, and tumorigenic breast epithelial cells. Noncytotoxic endotoxin (ET) concentrations capable of inducing an inflammatory phenotype were determined for the different cell lines. Results showed that short-term ET exposure upregulated matrix metalloproteinase-9 (MMP-9) activity in nontumorigenic mammary epithelial cells of mouse (SCp2) and human origins (HMT-3522 S1; S1) and upregulated inflammatory mediators including nitric oxide (NO) and interleukin 1-ß in tumorigenic human breast cells (MDA-MB-231), all in a dose-dependent manner. Long-term ET treatment, but not short-term, triggered the migration of SCp2 cells, and proliferation and migration of tumorigenic human breast cells MCF-7 and MDA-MB-231. Both short- and long-term ET exposures preferentially enhanced the invasion of pretumorigenic S1-connexin 43 knockout (Cx43-KO S1) cells compared to their nontumorigenic S1 counterparts. Moreover, both ET exposures disrupted lumen formation and apicolateral distribution of ß-catenin in 3D cultures of S1 cells. In conclusion, ET treatment at concentrations that elicited inflammatory phenotype triggered tumor initiation events in nontumorigenic and pretumorigenic breast cells, and increased tumorigenicity of breast cancer cells. Our findings highlight the role of inflammation in enhancing migration, invasion, and loss of normal 3D morphology and suggest that such inflammatory insults can "add injury" to pretumorigenic and tumorigenic breast epithelial cells.

4.
Int J Mol Sci ; 22(11)2021 Jun 06.
Article in English | MEDLINE | ID: mdl-34204158

ABSTRACT

Breast cancer (BC) is the most predominant type of cancer among women. The aim of this study is to find new biomarkers that can help in early detection of BC, especially for those who are too young to be screened using mammography as per guidelines. Using microRNA microarray, we previously showed dysregulation of 74 microRNAs in tumors from early BC patients as compared with normal adjacent tissues, which we were interested in studying in blood circulation. In this study, we investigated the expression of 12 microRNA (miR-21/miR-155/miR-23a/miR-130a/miR-145/miR-425-5p/miR-139-5p/miR-451/miR-195/miR-125b/miR-100, and miR-182) in the plasma of 41 newly diagnosed Lebanese BC patients with early invasive ductal carcinoma as compared with 32 healthy controls. Total RNA was extracted from plasma, and expression levels of miRNA of interest were measured using RT-qPCR followed by statistical analysis; miR-21, miR-155, miR-23a, miR-130a, miR-145, miR-425-5p, and miR-139-5p were significantly upregulated and miR-451 was significantly downregulated, in the plasma of BC patients as compared with healthy controls. The positively correlated miR-23a, miR-21, and miR-130a had a high diagnostic accuracy (86%). Importantly, the combination of miR-145/miR-425-5p/miR-139-5p/miR-130a scored the highest diagnostic accuracy of 95% with AUC = 0.97 (sensitivity 97% and specificity 91%). MicroRNAs are promising non-invasive diagnostic biomarkers for early-stage BC with the panel of miR-145/miR-425-5p/miR-139-5p/miR-130a having the highest diagnostic accuracy.


Subject(s)
Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Breast Neoplasms/blood , Breast Neoplasms/diagnosis , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Gene Expression Profiling , Adult , Aged , Aged, 80 and over , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Neoplasm Staging , Statistics, Nonparametric , Young Adult
5.
Sci Rep ; 11(1): 2626, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514777

ABSTRACT

mRNA-circRNA-miRNAs axes have been characterized in breast cancer, but not as risk-assessment axes for tumor initiation in early-onset breast cancer that is increasing drastically worldwide. To address this gap, we performed circular RNA (circRNA) microarrays and microRNA (miRNA) sequencing on acini of HMT-3522 S1 (S1) breast epithelial risk-progression culture model in 3D and chose an early-stage population miRNome for a validation cohort. Nontumorigenic S1 cells form fully polarized epithelium while pretumorigenic counterparts silenced for gap junction Cx43 (Cx43-KO-S1) lose epithelial polarity, multilayer and mimic premalignant in vivo mammary epithelial morphology. Here, 121 circRNAs and 65 miRNAs were significantly dysregulated in response to Cx43 silencing in cultured epithelia and 15 miRNAs from the patient cohort were involved in epithelial polarity disruption. Focusing on the possible sponging activity of the validated circRNAs to their target miRNAs, we found all miRNAs to be highly enriched in cancer-related pathways and cross-compared their dysregulation to actual miRNA datasets from the cultured epithelia and the patient validation cohort. We present the involvement of gap junction in post-transcriptional axes and reveal Cx43/hsa_circ_0077755/miR-182 as a potential biomarker signature axis for heightened-risk of breast cancer initiation, and that its dysregulation patterns might predict prognosis along breast cancer initiation and progression.


Subject(s)
Breast Neoplasms/metabolism , Connexin 43/physiology , MicroRNAs/physiology , RNA, Circular/physiology , Biomarkers, Tumor/physiology , Cell Line, Tumor , Cohort Studies , Female , Gene Expression Regulation, Neoplastic , Humans
6.
Acta Biomater ; 122: 186-198, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33444795

ABSTRACT

Glycosaminoglycans (GAG) are key elements involved in various physiological and pathological processes including cancer. Several GAG-based drugs have been developed showing significant results and potential use as cancer therapeutics. We previously reported that alginate sulfate (AlgSulf), a GAG-mimetic, reduces the proliferation of lung adenocarcinoma cells. In this study, we evaluated the preferential effect of AlgSulf on tumorigenic and nontumorigenic mammary epithelial cells in 2D, 3D, and coculture conditions. AlgSulf were synthesized with different degrees of sulfation (DSs) varying from 0 to 2.7 and used at 100 µg/mL on HMT-3522 S1 (S1) nontumorigenic mammary epithelial cells and their tumorigenic counterparts HMT-3522 T4-2 (T4-2) cells. The anti-tumor properties of AlgSulf were assessed using trypan blue and bromodeoxyuridine proliferation (BrdU) assays, immunofluorescence staining and transwell invasion assay.  Binding of insulin and epidermal growth factor (EGF) to sulfated substrates was measured using QCM-D and ELISA. In 2D, the cell growth rate of cells treated with AlgSulf was consistently lower compared to untreated controls (p<0.001) and surpassed the effect of the native GAG heparin (positive control). In 3D, AlgSulf preferentially hindered the growth rate and the invasion potential of tumorigenic T4-2 nodules while maintaining the formation of differentiated polarized nontumorigenic S1 acini. The preferential growth inhibition of tumorigenic cells by AlgSulf was confirmed in a coculture system (p<0.001). In the ELISA assay, a trend of EGF binding was detected for sulfated polysaccharides while QCM-D analysis showed negligible binding of insulin and EGF to sulfated substrates. The preferential effect mediated by the mimetic sulfated GAGs on cancer cells may in part be growth factor dependent. Our findings suggest a potential anticancer therapeutic role of AlgSulf for the development of anticancer drugs.


Subject(s)
Biomimetics , Lung Neoplasms , Antigens, Differentiation , Cell Proliferation , Epithelial Cells , Glycosaminoglycans , Humans
7.
Nutr Cancer ; 73(11-12): 2113-2129, 2021.
Article in English | MEDLINE | ID: mdl-32972248

ABSTRACT

According to the WHO, Arab countries have the highest relative increase in Breast Cancer (BC) rates worldwide. Current shifts in dietary patterns in these countries are postulated as important modifiable risk factors of the disease. The objectives of this review were to examine the gaps and opportunities in the extent, range and nature of nutrition-related BC research in Arab countries. Studies (n = 286) were identified through searching 14 electronic databases. Among the gaps identified were limited international collaborations, preponderance of laboratory-based research at the expense of population-based research, focus on single supplement/nutrient/food research, limited use of dietary assessment tools, and studying nutrition in isolation of other environmental factors. Despite these gaps, several opportunities appeared. The distribution of papers among Arab countries suggested that collaboration between high and middle income countries could create a positive synergy between research expertise and wealth. In addition, the steady increase in the number of articles published during the last two decades reflected a promising momentum in nutrition and BC research in the Arab world. These gaps and opportunities constituted context-specific evidence to orient nutrition and BC research in Arab countries which could ultimately lead to development of effective interventions for prevention of BC in these countries.


Subject(s)
Biomedical Research , Breast Neoplasms , Arabs , Breast Neoplasms/epidemiology , Breast Neoplasms/prevention & control , Female , Humans , Middle East/epidemiology , Nutritional Status
9.
Front Med (Lausanne) ; 6: 192, 2019.
Article in English | MEDLINE | ID: mdl-31555649

ABSTRACT

Breast cancer (BC) is a global public health burden, constituting the highest cancer incidence in women worldwide. Connexin43 (Cx43) is a member of a family of transmembrane proteins responsible in part for intercellular communication between adjacent breast epithelial cells, via gap junctions. Cx43 plays key role in mammary gland development and differentiation and its spatio-temporal perturbation contributes to tumorigenesis. Thus, Cx43 acts as a breast tumor-suppressor. Signaling pathways and phenotypes downstream of Cx43 mRNA loss/mis-localization in breast cells have been well-studied. However, axes parallel to Cx43 loss are less understood. microRNAs (miRNAs) are small endogenous non-coding RNAs that repress translation and circularRNAs (circRNAs) are a class of endogenous RNAs that originate from RNA splicing and act as miRNA "sponges". CircRNAs and miRNAs are dysregulated in cancers and are highly abundant and stable in the circulation. Thus, they present as attractive liquid biopsy cancer biomarkers. Here, an axis for Cx43 mRNA-circRNAs-miRNAs interactions along BC initiation (denoted by loss of breast epithelial polarity and development of hyperplastic phenotypes) is proposed to potentially serve as a signature biomarker toward BC early-onset detection and prevention.

10.
Genes Genomics ; 41(12): 1431-1443, 2019 12.
Article in English | MEDLINE | ID: mdl-31541355

ABSTRACT

BACKGROUND: Breast cancer, the most commonly diagnosed malignancy in women, accounts for the highest cancer-related deaths worldwide. Triple negative breast cancer (TNBC), lacking the expression of estrogen, progesterone and HER2 receptors, has an aggressive clinical phenotype and is susceptible to chemotherapy but not to hormonal or targeted immunotherapy. In an attempt to identify potent and selective anti-TNBC agents, a set of thiosemicarbazone derivatives were screened for their cytotoxic activity against MDA-MB 231 breast cancer cell line. METHODS: MTT assay was used to examine cell viability. P53 phosphorylation status, poly (ADP-ribose) polymerase (PARP) cleavage as well as Bcl2 and Bax protein levels were assessed by Western blot. Quantitative Real Time-PCR was carried out to characterize miRNAs expression levels. RESULTS: Combining Cisplatin + thiosemicarbazone compound 4 showed potent anti-TNBC potential. Cisplatin + compound 4 significantly enhanced p53 phosphorylation, induced Bax amount, reduced Bcl2 protein levels, enhanced PARP cleavage and modulated miRNAs expression profile in TNBCs, with a particular overexpression of miR-125a-5p and miR-181a-5p. Intriguingly, miR-125a-5p and miR-181a-5p could significantly downregulate BCL2 expression by binding to their target sites in the 3'UTR. CONCLUSIONS: Collectively, our results demonstrate an anti-TNBC activity of Cisplatin + thiosemicarbazone compound 4 combination mediated via induction of apoptosis.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , MicroRNAs/metabolism , Thiosemicarbazones/pharmacology , Triple Negative Breast Neoplasms/genetics , 3' Untranslated Regions , Cell Line, Tumor , Cisplatin/pharmacology , Humans , MicroRNAs/genetics , MicroRNAs/physiology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Thiosemicarbazones/chemistry , Triple Negative Breast Neoplasms/metabolism
11.
Adv Exp Med Biol ; 1152: 335-364, 2019.
Article in English | MEDLINE | ID: mdl-31456193

ABSTRACT

Breast cancer and specifically metastatic breast cancer (mBC) constitutes a major health burden worldwide with the highest number of cancer-related mortality among women across the globe. Despite having similar subtypes, breast cancer patients present with a spectrum of aggressiveness and responsiveness to therapy due to cancer heterogeneity. Drug resistance and metastasis contribute to therapy failure and cancer recurrence. Research in the past two decades has focused on microRNAs (miRNAs), small endogenous non-coding RNAs, as active players in tumorigenesis, therapy resistance and metastasis and as novel non-invasive cancer biomarkers. This is due to their unique dysregulated signatures throughout tumor progression and their tumor suppressive/oncogenic roles. Identifying miRNAs signatures capable of predicting therapy response and metastatic onset in breast cancer patients might improve prognosis and offer prolonged median and relapse-free survival rate. Despite the growing reports on miRNAs as novel non-invasive biomarkers in breast cancer and as regulators of breast cancer drug resistance or metastasis, the quest on whether some miRNAs are capable of regulating both simultaneously is inevitable, yet understudied. This chapter will review the role of miRNAs as biomarkers and as active players in inducing/reversing anti-cancer drug resistance, driving/blocking metastasis or regulating both simultaneously in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Drug Resistance, Neoplasm , MicroRNAs/genetics , Neoplasm Metastasis , Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Recurrence, Local
12.
Curr Protoc Chem Biol ; 11(2): e65, 2019 06.
Article in English | MEDLINE | ID: mdl-31166658

ABSTRACT

With the increase in knowledge on the importance of the tumor microenvironment, cell culture models of cancers can be adapted to better recapitulate physiologically relevant situations. Three main microenvironmental factors influence tumor phenotype: the biochemical components that stimulate cells, the fibrous molecules that influence the stiffness of the extracellular matrix, and noncancerous cells like epithelial cells, fibroblasts, endothelial cells, and immune cells. Here we present methods for the culture of carcinomas in the presence of a matrix of specific stiffness, and for the coculture of tumors and fibroblasts as well as epithelial cells in the presence of matrix. Information is provided to help with choice and assessment of the matrix support and in working with serum-free medium. Using the example of a tissue chip recapitulating the environmental geometry of carcinomas, we also highlight the development of engineered platforms that provide exquisite control of cell culture parameters necessary in research and development. © 2019 by John Wiley & Sons, Inc.


Subject(s)
Cell Culture Techniques , Coculture Techniques , Neoplasms/pathology , Tumor Microenvironment , Humans
13.
Cancers (Basel) ; 11(3)2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30857262

ABSTRACT

(1) Background: The expression of connexin 43 (Cx43) is disrupted in breast cancer, and re-expression of this protein in human breast cancer cell lines leads to decreased proliferation and invasiveness, suggesting a tumor suppressive role. This study aims to investigate the role of Cx43 in proliferation and invasion starting from non-neoplastic breast epithelium. (2) Methods: Nontumorigenic human mammary epithelial HMT-3522 S1 cells and Cx43 shRNA-transfected counterparts were cultured under 2-dimensional (2-D) and 3-D conditions. (3) Results: Silencing Cx43 induced mislocalization of ß-catenin and Scrib from apicolateral membrane domains in glandular structures or acini formed in 3-D culture, suggesting the loss of apical polarity. Cell cycle entry and proliferation were enhanced, concomitantly with c-Myc and cyclin D1 upregulation, while no detectable activation of Wnt/ß-catenin signaling was observed. Motility and invasion were also triggered and were associated with altered acinar morphology and activation of ERK1/2 and Rho GTPase signaling, which acts downstream of the noncanonical Wnt pathway. The invasion of Cx43-shRNA S1 cells was observed only under permissive stiffness of the extracellular matrix (ECM). (4) Conclusion: Our results suggest that Cx43 controls proliferation and invasion in the normal mammary epithelium in part by regulating noncanonical Wnt signaling.

14.
J Mammary Gland Biol Neoplasia ; 24(1): 17-38, 2019 03.
Article in English | MEDLINE | ID: mdl-30194659

ABSTRACT

Connexins (Cxs), the building blocks of gap junctions (GJs), exhibit spatiotemporal patterns of expression and regulate the development and differentiation of the mammary gland, acting via channel-dependent and channel-independent mechanisms. Impaired Cx expression and localization are reported in breast cancer, suggesting a tumor suppressive role for Cxs. The signaling events that mediate the role of GJs in the development and tumorigenesis of the mammary gland remain poorly identified. The Wnt pathways, encompassing the canonical or the Wnt/ß-catenin pathway and the noncanonical ß-catenin-independent pathway, also play important roles in those processes. Indeed, aberrant Wnt signaling is associated with breast cancer. Despite the coincident roles of Cxs and Wnt pathways, the cross-talk in the breast tissue is poorly defined, although this is reported in a number of other tissues. Our previous studies revealed a channel-independent role for Cx43 in inducing differentiation or suppressing tumorigenesis of mammary epithelial cells by acting as a negative regulator of the Wnt/ß-catenin pathway. Here, we provide a brief overview of mammary gland development, with emphasis on the role of Cxs in development and tumorigenesis of this tissue. We also discuss the role of Wnt signaling in similar contexts, and review the literature illustrating interplay between Cxs and Wnt pathways.


Subject(s)
Breast Neoplasms/pathology , Carcinogenesis/pathology , Gap Junctions/pathology , Mammary Glands, Animal/pathology , Mammary Glands, Human/pathology , Wnt Signaling Pathway , Animals , Connexins/metabolism , Disease Models, Animal , Female , Humans , Mammary Glands, Animal/cytology , Mammary Glands, Animal/growth & development , Mammary Glands, Human/cytology , Mammary Glands, Human/growth & development , beta Catenin/metabolism
15.
SAGE Open Med ; 6: 2050312118809541, 2018.
Article in English | MEDLINE | ID: mdl-30455947

ABSTRACT

OBJECTIVE: Sea cucumbers are considered among the most important functional foods. Following bioassay guided fractionation, we assessed the anti-proliferative and anti-inflammatory activities of Holothuria polii (H. polii) extracts. METHODS: Sea cucumber ethanolic extract and the partially purified aqueous fractions were assessed for their anti-proliferative activities. These latter bioactivities were evaluated in the highly invasive MDA-MB-231 human breast cancer cells in two-dimensional and three-dimensional cultures using trypan blue exclusion assay. The tumor-suppressive effects of sea cucumber ethanolic extract and aqueous fractions were assayed by measuring the trans-well invasion of MDA-MB-231 cells and the expression of some epithelial mesenchymal transition markers using quantitative reverse-transcription polymerase chain reaction and western blot analysis. The anti-inflammatory activity of the aqueous fraction was tested by measuring the secreted levels of interleukin-6, nitric oxide, and matrix metalloproteinase 9 in endotoxin-induced mammary epithelial SCp2 cells and interleukin-1ß in phorbol-12-myristate-13-acetate-activated human monocytic THP-1 cells. RESULTS: Sea cucumber ethanolic extract and the aqueous fraction significantly decreased the proliferation of MDA-MB-231 cells by more than 50% at similar and noncytotoxic concentrations and caused an arrest in the S-phase of the cell cycle of treated cells. In contrast, petroleum ether, chloroform, ethyl acetate, and n-butanol organic fractions did not show any significant activity. Furthermore, sea cucumber ethanolic extract and aqueous fraction reduced the proliferation of MDA-MB-231 cells in three-dimensional cultures by more than 60% at noncytotoxic concentrations. In addition, treatment with these concentrations resulted in the loss of stellate outgrowths in favor of spherical aggregates and a 30% decrease in invasive properties. Both sea cucumber ethanolic extract and aqueous decreased the transcription of vimentin and the protein expression levels of vimentin and N-cadherin in three-dimensional cultures. The aqueous fraction decreased the levels of inflammatory markers interleukin-6, nitric oxide, and matrix metalloproteinase 9 in the mouse mammary SCp2 cells, and the level of interleukin-1ß produced by phorbol-12-myristate-13-acetate-activated THP-1 human monocytic cells. CONCLUSION: The data reveal for the first time promising anti-proliferative and anti-inflammatory activities in H. polii water extract in two-dimensional and three-dimensional culture models.

16.
Sci Rep ; 7(1): 16829, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29203780

ABSTRACT

Breast cancer (BC) has a higher incidence in young Lebanese woman as compared to the West. We assessed the microRNA (miRNA) microarray profile of tissues derived from Lebanese patients with early BC and performed mRNA-miRNA integration analysis. 173 miRNAs were significantly dysregulated in 45 BC versus 17 normal adjacent breast tissues, including 74 with a fold change more than two of which 17 were never reported before in cancer. Integration analysis of mRNA-miRNA microarray data revealed a potential role of 51 dysregulated miRNA regulating 719 tumor suppressive or oncogenic mRNA associated with increased proliferation and decreased migration and invasion. We then performed a comparative miRNA microarray profile analysis of BC tissue between these 45 Lebanese and 197 matched American BC patients. Notably, Lebanese BC patients had 21 exclusively dysregulated miRNA (e.g. miR-31, 362-3p, and 663) and 4 miRNA with different expression manner compared to American patients (e.g. miR-1288-star and 324-3p). Some of these differences could reflect variation in patient age at diagnosis or ethnic variation affecting miRNA epigenetic regulation or sequence of miRNA precursors. Our data provide a basis for genetic/epigenetic investigations to explore the role of miRNA in early stage BC in young women, including ethnic specific differences.


Subject(s)
Breast Neoplasms/pathology , MicroRNAs/metabolism , Adult , Breast Neoplasms/ethnology , Breast Neoplasms/genetics , Carcinoma, Ductal/ethnology , Carcinoma, Ductal/genetics , Carcinoma, Ductal/pathology , Cell Movement , Cell Proliferation , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Lebanon , Neoplasm Staging , Oligonucleotide Array Sequence Analysis , RNA, Messenger/metabolism , Transcriptome , Tumor Cells, Cultured , United States
17.
Anticancer Drugs ; 28(7): 757-770, 2017 08.
Article in English | MEDLINE | ID: mdl-28471809

ABSTRACT

Despite recent advances in chemotherapy, aggressive and metastatic breast cancers remain refractory to targeted therapy and the development of novel drugs is urgently needed. Retinoids are crucial regulators of cellular proliferation, differentiation, and cell death, and have shown potent chemotherapeutic and chemopreventive properties. The major drawback of the use of all-trans retinoic acid (ATRA) in cancer therapy is disease relapse. Therefore, synthetic retinoids, specifically ST1926, have emerged as potent anticancer agents. Given the importance of the microenvironment in modulating the response of cancer cells to chemotherapeutic drugs, we investigated the antitumor activities of ST1926 in two-dimensional (2D) and different three-dimensional (3D) human breast cancer models and compared them with ATRA. We have shown that in 2D cell culture models, ATRA-resistant MCF-7 and MDA-MB-231 cells were sensitive to ST1926 at submicromolar concentrations that spared the 'normal-like' breast epithelial cells. ST1926 induced apoptosis and S-phase arrest, caused DNA damage, and downregulated the Wnt/ß-catenin pathway in breast cancer cells in 2D and 3D cell culture models. ST1926-mediated growth inhibition was independent of the retinoid receptor-signaling pathway. Long-term treatments with low submicromolar ST1926 concentrations reduced the anchorage-independent growth and decreased the sphere-forming ability of breast cancer progenitor cells in the sphere formation assay. Furthermore, ST1926 potently induced cell death of breast cancer cells under 3D conditions and spared the lumen-forming ability of normal-like breast epithelial cells. In tested 3D models, ATRA had minimal effects on the growth of breast cancer cells compared with ST1926. In summary, our results highlight the therapeutic potential of ST1926 in breast cancer and warrant its further clinical development.


Subject(s)
Adamantane/analogs & derivatives , Breast Neoplasms/drug therapy , Cinnamates/pharmacology , Adamantane/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , MCF-7 Cells , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
18.
Pharmacol Ther ; 172: 34-49, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27916656

ABSTRACT

Breast cancer is a major health problem that affects one in eight women worldwide. As such, detecting breast cancer at an early stage anticipates better disease outcome and prolonged patient survival. Extensive research has shown that microRNA (miRNA) are dysregulated at all stages of breast cancer. miRNA are a class of small noncoding RNA molecules that can modulate gene expression and are easily accessible and quantifiable. This review highlights miRNA as diagnostic, prognostic and therapy predictive biomarkers for early breast cancer with an emphasis on the latter. It also examines the challenges that lie ahead in their use as biomarkers. Noteworthy, this review addresses miRNAs reported in patients with early breast cancer prior to chemotherapy, radiotherapy, surgical procedures or distant metastasis (unless indicated otherwise). In this context, miRNA that are mentioned in this review were significantly modulated using more than one statistical test and/or validated by at least two studies. A standardized protocol for miRNA assessment is proposed starting from sample collection to data analysis that ensures comparative analysis of data and reproducibility of results.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/diagnosis , MicroRNAs/genetics , Animals , Breast Neoplasms/genetics , Early Detection of Cancer/methods , Female , Gene Expression Regulation, Neoplastic , Humans , Prognosis , Reproducibility of Results
19.
Article in English | MEDLINE | ID: mdl-26089941

ABSTRACT

A sesquiterpene lactone 1-ß,10-Epoxy-6-hydroxy-1,10H-inunolide (K100) was isolated through "bioassay-guided fractionation" from Cota palaestina subsp. syriaca, an Eastern Mediterranean endemic plant. K100 inhibited endotoxin- (ET-) induced proinflammatory markers: IL-6, MMP-9, and NO in normal mouse mammary SCp2 Cells. Molecular docking in silico suggested that K100, having highly analogous structure as parthenolide (PTL), an anticancer compound, could bind PTL target proteins at similar positions and with comparable binding affinities. Both compounds, K100 and PTL, inhibited the proliferation and prolonged the S-phase of the cell cycle of breast adenocarcinoma MDA-MB-231 cells grown in 2D cultures. Noncytotoxic concentrations of K100 and PTL decreased the proliferation rate of MDA-MB-231 and shifted their morphology from stellate to spherical colonies in 3D cultures. This was accompanied with a significant increase in the amount of small colonies and a decrease in the amount of large colonies. Moreover, K100 and PTL decreased cellular motility and invasiveness of MDA-MB-231 cells. In summary, these results suggest that K100 exhibits PTL-analogous anti-inflammatory, cytostatic, and antimetastatic effects.

20.
PLoS One ; 9(9): e107566, 2014.
Article in English | MEDLINE | ID: mdl-25232827

ABSTRACT

Relative to western populations, the percentage of women diagnosed with breast cancer at a young age in Lebanon is high. While the younger age of the Lebanese population compared to the West certainly contributes to this difference, potential genetic, reproductive and/or biological factors likely play an important role. The objective of this study is to investigate the contribution of miRNAs in this setting through the analysis of the expression of five reported dysregulated miRNAs, miR-148b, miR-10b, miR-21, miR-221, and miR-155 in 20 normal and 57 cancerous breast tissues from Lebanese breast cancer patients. After finding their relative expression by quantitative reverse transcription real time PCR, the results were analyzed with respect to the patients' clinical and histopathology presentations. Compared to normal breast tissues, significant upregulation of miR-155, miR-21 and miR-148b, notable downregulation of miR-10b and non-significant expression of miR-221 were observed in tumor tissues. Moreover, miR-10b was significantly underexpressed in estrogen/progesterone receptor (ER/PR) negative tumors relative to ER/PR positive tumor tissues. miR-155 was also significantly overexpressed in postmenopausal patients and in those of age at diagnosis greater than 40 years old as well as in PR negative or in human epidermal growth factor 2 (Her2) positive tissues. This study is the first one to report miRNA expression patterns in Lebanese breast cancer patients. We found that differential miRNA expression in breast cancer could be variable between Lebanese and Western populations. miR-10b was positively correlated with the ER and PR status and miR-155 could be a noteworthy biomarker for the menopausal state, age at diagnosis, PR and Her2 status. Hence, miRNA can be used as biomarkers for early breast cancer detection.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , MicroRNAs/genetics , Adult , Breast/pathology , Breast Neoplasms/epidemiology , Down-Regulation , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Markers/genetics , Humans , Lebanon/epidemiology , MicroRNAs/biosynthesis , Pilot Projects , Receptor, ErbB-2/genetics , Receptors, Estrogen/genetics , Receptors, Progesterone/genetics , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL