Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35955836

ABSTRACT

Triple-negative breast cancer (TNBC) is associated with a poor prognosis and the absence of targeted therapy. c-Kit, a receptor tyrosine kinase (RTK), is considered a molecular target for anticancer drugs. Tyrosine kinase inhibitors (TKIs) recognizing c-Kit are used for the treatment of c-Kit-expressing tumors. However, the expression, function, and therapeutic potential of c-Kit have been little explored in TNBC. Here, we studied the expression and effects of c-Kit in TNBC through in vitro and in silico analysis, and evaluated the response to TKIs targeting c-Kit. Analysis of TNBC cells showed the expression of functional c-Kit at the cell membrane. The stimulation of c-Kit with its ligand induced the activation of STAT3, Akt, and ERK1/2, increasing cell migration, but had no effect on cell proliferation or response to Doxorubicin. Analysis of public datasets showed that the expression of c-Kit in tumors was not associated with patient survival. Finally, TNBC cells were susceptible to TKIs, in particular the effect of Nilotinib was stronger than Doxorubicin in all cell lines. In conclusion, TNBC cells express functional c-Kit, which is a targetable molecule, and show a strong response to Nilotinib that may be considered a candidate drug for the treatment of TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Cell Line, Tumor , Cell Proliferation , Doxorubicin/pharmacology , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-kit/genetics , Receptor Protein-Tyrosine Kinases , Triple Negative Breast Neoplasms/pathology
2.
Front Oncol ; 10: 1206, 2020.
Article in English | MEDLINE | ID: mdl-32850353

ABSTRACT

Patients with triple-negative breast cancer (TNBC) have a poor prognosis, partly because of the absence of targeted therapies. Recognition of the key role of immune responses against cancer has allowed the advent of immunotherapy, focused on the inhibition of negative immune checkpoints, such as CTLA-4. CTLA-4 is also expressed in some cancer cells, but its activity in tumor cells is not completely understood. Thus, the aim of the present work was to determine the biological landscape and functions of CTLA-4 expressed in TNBC cells through preclinical and in silico analysis. Exploration of CTLA-4 by immunohistochemistry in 50 TNBC tumors revealed membrane and cytoplasmic expression at different intensities. Preclinical experiments, using TNBC cell lines, showed that stimulation of CTLA-4 with CD80 enhances activation of the ERK1/2 signaling pathway, while CTLA-4 blockade by Ipilimumab induces the activation of AKT and reduces cell proliferation in vitro. We then developed an analytic pipeline to define the effects of CTLA-4 in available public data that allowed us to identify four distinct tumor clusters associated with CTLA-4 activation, which are characterized by enrichment of distinctive pathways associated with cell adhesion, MAPK signaling, TGF-ß, VEGF, TNF-α, drug metabolism, ion and amino acid transport, and KRAS signaling, among others. In addition, blockade of CTLA-4 induced increased secretion of IL-2 by tumor cells, suggesting that the receptor regulates cellular functions that may impact the immune microenvironment. This is relevant because a deep characterization of immune infiltrate, conducted using public data to estimate the abundancies of immune-cell types, showed that CTLA-4-activated-like tumors present a conditional immune state similar to an escape phenotype exploited by cancer cells. Finally, by interrogating transcriptional predictors of immunotherapy response, we defined that CTLA-4 activation correlates with high immune scores related to good clinical predicted responses to anti-CTLA-4 therapy. This work sheds new light on the roles of activated CLTA-4 in the tumor compartment and suggests an important interplay between tumor CLTA-4-activated portraits and immune-infiltrating cell populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...