Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Biomol Struct Dyn ; 42(5): 2437-2448, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37160705

ABSTRACT

Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a role in healing, including reducing inflammation, promoting fibroblast and keratinocyte migration, and modifying scar tissue. Due to their pleiotropic functions in the wound-healing process in diabetic wounds, MMPs constitute a significant cause of delayed wound closure. COX-2 inhibitors are proven to inhibit inflammation. The present study aims to repurpose celecoxib against MMP-2, MMP-8 and MMP-9 through in silico approaches, such as molecular docking, molecular dynamics, and MMPB/SA analysis. We considered five selective COX-2 inhibitors (celecoxib, etoricoxib, lumiracoxib, rofecoxib and valdecoxib) for our study against MMPs. Based on molecular docking study and hydrogen bonding pattern, celecoxib in complex with three MMPs was further analyzed using 1 µs (1000 ns) molecular dynamics simulation and MMPB/SA techniques. These studies identified that celecoxib exhibited significant binding affinity -8.8, -7.9 and -8.3 kcal/mol, respectively, against MMP-2, MMP-8 and MMP-9. Celecoxib formed hydrogen bonding and hydrophobic (π-π) interactions with crucial substrate pocket amino acids, which may be accountable for their inhibitory nature. The MMPB/SA studies showed that electrostatic and van der Waal energy terms favoured the total free binding energy component, while polar solvation terms were highly disfavored. The in silico analysis of the secondary structures showed that the celecoxib binding conformation maintains relatively stable along the simulation trajectories. These findings provide some key clues regarding the accommodation of celecoxib in the substrate binding S1' pocket and also provide structural insights and challenges in repurposing drugs as new MMP inhibitors with anti-inflammatory and anti-inflammatory wound-healing properties.Communicated by Ramaswamy H. Sarma.


Subject(s)
Cyclooxygenase 2 Inhibitors , Matrix Metalloproteinase Inhibitors , Molecular Dynamics Simulation , Humans , Celecoxib/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Drug Repositioning , Inflammation , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 8 , Matrix Metalloproteinase 9 , Molecular Docking Simulation , Matrix Metalloproteinase Inhibitors/chemistry , Matrix Metalloproteinase Inhibitors/pharmacology
2.
Pak J Pharm Sci ; 35(5): 1363-1369, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36451565

ABSTRACT

Acyclovir (ACY) is an antiviral class of drugs used to treat herpes simplex virus infections such as herpes simplex encephalitis (HSE). ACY is widely distributed; Systemic exposure of ACY leads to serious adverse effects. Because of its high pH, intravenous ACY may cause phlebitis and local inflammation if extravasation occurs. This study aims to enhance acyclovir delivery to the brain via the intranasal route by formulating ACY nano lipid carriers (ACY-NLCs) to circumvent the side-effects, as mentioned earlier. ACY-NLCs were prepared by emulsification, followed by ultrasonication. A Box-Behnken statistical design with three factors, three levels and 17 runs was selected for the optimization study using Design- Expert Software. Nanoparticles were characterized for particle size, entrapment efficiency and in-vitro drug release. ACY- NLC showed biphasic release pattern i.e. an initial faster release followed by sustained release. Biodistribution study by imaging, Nanoparticles were slowly cleared and biodistributed to the other organs was observed in 2nd and 3rd hr post-administration. From the toxicity studies, NLC formulation is safe and non-toxic for the nasal administration. Rhodamine loaeded NLCs were quickly adsorbed by the olfactory tract and distributed mainly to the lungs through respiratory tract and were also detected in the trachea and olfactory bulb. Biodistribution study of dye loaded NLCs reach brain compared to the Rhodamine-solution.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Nanoparticles , Humans , Administration, Intranasal , Acyclovir , Tissue Distribution , Brain , Rhodamines
3.
J Biomol Struct Dyn ; 40(4): 1830-1842, 2022 03.
Article in English | MEDLINE | ID: mdl-33111636

ABSTRACT

Brassica juncea is an important oil seed crop. The productivity of this plant, however, is known to be low due to the attack of plant pathogens. The plant chitinase-IV is known to hydrolyse the chitin present in the cell walls of the plant pathogens and thus enhance the plant defense systems. In this connection, studies were carried out by us on the prediction and characterization of the 3D structure of chitinase-IV, the structural changes that take place when the protein is in complex with Allosamidin and the chitin fragments (Tri-oligosaccharide and N-acetyl glucosamine) that act as elicitors to induce plant innate immunity against the invading pathogens, and molecular dynamic simulation studies on the stability of these complexes. These studies are expected to give us an insight into the chitin-binding domain and information on the dynamics and energetics of the protein, which is not possible to obtain by experimental methods. The predicted 3D structure of the protein should give us a better understanding of the molecular function of the chitinase gene in Brassica juncea for devising better methods of biocontrol against fungal phytopathogens and harmful insects so as to increase the crop yield.


Subject(s)
Chitinases , Plant Proteins/chemistry , Chitinases/chemistry , Models, Molecular , Molecular Dynamics Simulation , Mustard Plant/enzymology , Mustard Plant/genetics
4.
Drug Deliv Transl Res ; 12(1): 158-166, 2022 01.
Article in English | MEDLINE | ID: mdl-33748878

ABSTRACT

Diabetes mellitus (DM) is a complex disease that affects almost all the body's vital organs. Around 415 million people have been diagnosed with DM worldwide, and most of them are due to type 2 DM. The incidence of DM is estimated to increase by 642 million individuals by 2040. DM is considered to have many complications among which diabetic wound (DW) is one of the most distressing complication. DW affects 15% of people with diabetes and is triggered by the loss of glycaemic control, peripheral neuropathy, vascular diseases, and immunosuppression. For timely treatment, early detection, debridement, offloading, and controlling infection are crucial. Even though several treatments are available, the understanding of overlying diabetes-related wound healing mechanisms as therapeutic options has increased dramatically over the past decades. Conventional dressings are cost-effective; however, they are not productive enough to promote the overall process of DW healing. Thanks to tissue engineering developments, one of the promising current trends in innovative wound dressings such as hydrocolloids, hydrogels, scaffolds, films, and nanofibers which merges traditional healing agents and modern products/practices. Nanofibers prepared by electrospinning with enormous porosity, excellent absorption of moisture, the better exchange rate of oxygen, and antibacterial activities have increased interest. The application of these nanofibers can be extended by starting with a careful selection of polymers, loading with active therapeutic moieties such as peptides, proteins, active pharmaceutical ingredients (API), and stem cells, etc. to make them as potential dosage forms in the management of DWs. This review explains the potential applications of electrospun nanofibers in DW healing. A schematic view of role of nanofibers in diabetic wounds.


Subject(s)
Diabetes Mellitus , Nanofibers , Anti-Bacterial Agents/therapeutic use , Bandages , Diabetes Mellitus/drug therapy , Humans , Hydrogels , Wound Healing
5.
J Biomol Struct Dyn ; 40(21): 11383-11394, 2022.
Article in English | MEDLINE | ID: mdl-34455932

ABSTRACT

An unknown coronavirus that emerged sometime at the end of 2019 in China, the novel SARS-CoV-2, now called COVID-19, has spread all over the world. Several efforts have been made to prevent or treat this disease, though not with success. The initiation of COVID-19 viral infection involves specific binding of SARS-CoV-2 to the host surface of the receptor, ACE2. The ACE2- SARS-CoV-2 complex then gets transferred into the endosomes where the endosomal acidic proteases cleave the S protein present in SARS-CoV-2, activating its fusion and release of the viral genome. We have carried out detailed and thorough in silico studies to repurpose FDA approved compounds to inhibit human ACE2 receptor so as to prevent the viral entry. Our study reveals that five compounds show good binding to the ACE2 receptor and hence are potential candidates to interact with ACE2 and prevent it's recognition by the virus, SARS-CoV-2. Communicated by Ramaswamy H. Sarma.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19 , Genome, Viral , Peptidyl-Dipeptidase A/chemistry , Protein Binding , Virus Internalization , Drug Evaluation, Preclinical , Antiviral Agents/pharmacology
6.
Gels ; 9(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36661795

ABSTRACT

Background: Diabetic wound (DW) is the most devastating complication resulting in significant mortality and morbidity in diabetic patients. The objective of the current study was to formulate Epidermal Growth Factor loaded Chitosan nanoparticle impregnated with thermos-responsive injectable hydrogel with protease inhibitor. EGF, shown in all stages of wound healing from inflammation to proliferation and remodelling, combined with Doxycycline, a well-known anti-inflammatory and anti-bacterial drug, could be a better strategy in diabetic wound healing. However, EGF's low stability makes it difficult to use. Methodology: The nanoparticles were prepared using the ionic gelation method. The prepared nanoparticles were evaluated for particle size, zeta potential, entrapment efficiency, and SEM studies. Further, the optimized nanoparticle batch was loaded into hydrogel with a protease inhibitor. The hydrogel was evaluated for morphology, protease degradation, in vitro drug release, anti-bacterial activity, cell migration, in vitro cell biocompatibility, and in vivo wound healing studies. Results and Conclusion: The particle size analysis of nanoparticles revealed the size (203 ± 1.236 nm), Zeta potential (+28.5 ± 1.0 mV), and entrapment efficiency of 83.430 ± 1.8%, respectively. The hydrogel showed good porous morphology, injectability, thermo-responsive, biocompatibility, and controlled drug release. In vitro anti-bacterial studies revealed the potential anti-bacterial activity of doxycycline against various microbes. In vivo data indicated that combining EGF and DOX considerably reduced inflammation time-dependent than single-agent treatment. Furthermore, histological studies corroborated these findings. After topical application of hydrogel, histopathology studies revealed significant collagen synthesis and a fully regenerated epithelial layer and advancement in all three stages (proliferation, remodelling, and maturation), which are required to improve the diabetic wound healing process by any dressing. These findings demonstrated that hydrogel promoted cutaneous wound healing in STZ-induced rats by suppressing inflammation at the wound site. Furthermore, histological studies corroborated these findings. After topical application of hydrogel, histopathology studies revealed significant collagen synthesis, a fully regenerated epithelial layer, and advancement in all three stages (proliferation, remodelling, and maturation), which are required to improve the diabetic wound healing process by any dressing. These findings demonstrated that hydrogel promoted cutaneous wound healing in STZ-induced rats by suppressing inflammation at the wound site.

7.
Bioinformation ; 17(1): 249-265, 2021.
Article in English | MEDLINE | ID: mdl-34393444

ABSTRACT

The enzyme, α-topoisomerase II (α-Topo II), is known to regulate efficiently the topology of DNA. It is highly expressed in rapidly proliferating cells and plays an important role in replication, transcription and chromosome organisation. This has prompted several investigators to pursue α-Topo II inhibitors as anticancer agents. δ-Carboline, a natural product, and its synthetic derivatives are known to exert potent anticancer activity by selectively targeting α-Topo II. Therefore, it is of interest to design carboline derivatives fused with pyrrolidine-2,5-dione in this context. δ-Carbolines fused with pyrrolidine-2,5-dione are of interest because the succinimide part of fused heteroaromatic molecule can interact with the ATP binding pocket via the hydrogen bond network with selectivity towards α-Topo II. The 300 derivatives designed were subjected to the Lipinski rule of 5, ADMET and toxicity prediction. The designed compounds were further analysed using molecular docking analysis on the active sites of the α-Topo II crystal structure (PDB ID:1ZXM). Molecular dynamic simulations were also performed to compare the binding mode and stability of the protein-ligand complexes. Compounds with ID numbers AS89, AS104, AS119, AS209, AS239, AS269, and AS299 show good binding activity compared to the co-crystal ligand. Molecular Dynamics simulation studies show that the ligand binding to α-Topo II in the ATP domain is stableand the protein-ligand conformation remains unchanged. Binding free energy calculations suggest that seven molecules designed are potential inhibitors for α-Topo II for further consideration as anticancer agents.

8.
Tissue Eng Regen Med ; 18(5): 713-734, 2021 10.
Article in English | MEDLINE | ID: mdl-34048000

ABSTRACT

Diabetic wound (DW) is one of the leading complications of patients having a long history of uncontrolled diabetes. Moreover, it also imposes an economic burden on people suffering from wounds to manage the treatment. The major impending factors in the treatment of DW are infection, prolonged inflammation and decreased oxygen levels. Since these non-healing wounds are associated with an extended recovery period, the existing therapies provide treatment for a limited period only. The areas covered in this review are general sequential events of wound healing along with DW's pathophysiology, the origin of DW and success, as well as limitations of existing therapies. This systematic review's significant aspect is to highlight the fabrication, characterization and applications of various acellular scaffolds used to heal DW. In addition to that, cellular scaffolds are also described to a limited extent.


Subject(s)
Biocompatible Materials , Diabetes Mellitus , Biocompatible Materials/therapeutic use , Humans , Wound Healing
9.
Eur J Pharmacol ; 901: 174082, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33823185

ABSTRACT

The pandemic, COVID-19, has spread worldwide and affected millions of people. There is an urgent need, therefore, to find a proper treatment for the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent. This paper focuses on identifying inhibitors that target SARS-CoV-2 proteases, PLPRO and 3CLPRO, which control the duplication and manages the life cycle of SARS-CoV-2. We have carried out detailed in silico Virtual high-throughput screening using Food and Drug Administration (FDA) approved drugs from the Zinc database, COVID-19 clinical trial compounds from Pubchem database, Natural compounds from Natural Product Activity and Species Source (NPASS) database and Maybridge database against PLPRO and 3CLPRO proteases. After thoroughly analyzing the screening results, we found five compounds, Bemcentinib, Pacritinib, Ergotamine, MFCD00832476, and MFCD02180753 inhibit PLPRO and six compounds, Bemcentinib, Clofazimine, Abivertinib, Dasabuvir, MFCD00832476, Leuconicine F inhibit the 3CLPRO. These compounds are stable within the protease proteins' active sites at 20ns MD simulation. The stability is revealed by hydrogen bond formations, hydrophobic interactions, and salt bridge interactions. Our study results also reveal that the selected five compounds against PLPRO and the six compounds against 3CLPRO bind to their active sites with good binding free energy. These compounds that inhibit the activity of PLPRO and 3CLPRO may, therefore, be used for treating COVID-19 infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , High-Throughput Screening Assays/methods , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Catalytic Domain/drug effects , Databases, Factual , Drug Repositioning , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Salts/chemistry , Viral Nonstructural Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...