Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Mol Biol ; 435(15): 168143, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37150290

ABSTRACT

Retrovirus immature particle morphology consists of a membrane enclosed, pleomorphic, spherical and incomplete lattice of Gag hexamers. Previously, we demonstrated that human immunodeficiency virus type 2 (HIV-2) immature particles possess a distinct and extensive Gag lattice morphology. To better understand the nature of the continuously curved hexagonal Gag lattice, we have used the single particle cryo-electron microscopy method to determine the HIV-2 Gag lattice structure for immature virions. The reconstruction map at 5.5 Å resolution revealed a stable, wineglass-shaped Gag hexamer structure with structural features consistent with other lentiviral immature Gag lattice structures. Cryo-electron tomography provided evidence for nearly complete ordered Gag lattice structures in HIV-2 immature particles. We also solved a 1.98 Å resolution crystal structure of the carboxyl-terminal domain (CTD) of the HIV-2 capsid (CA) protein that identified a structured helix 12 supported via an interaction of helix 10 in the absence of the SP1 region of Gag. Residues at the helix 10-12 interface proved critical in maintaining HIV-2 particle release and infectivity. Taken together, our findings provide the first 3D organization of HIV-2 immature Gag lattice and important insights into both HIV Gag lattice stabilization and virus maturation.


Subject(s)
HIV-2 , Virion , gag Gene Products, Human Immunodeficiency Virus , Humans , Capsid Proteins/chemistry , Cryoelectron Microscopy , gag Gene Products, Human Immunodeficiency Virus/chemistry , HIV-2/chemistry , Virion/chemistry , Virus Assembly
2.
J Mol Biol ; 434(19): 167753, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35868362

ABSTRACT

Human immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein-protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation. Previous studies have demonstrated that the immature particle morphology of HIV-2 is intriguingly distinct relative to that of HIV-1. Based upon this observation, we sought to determine the amino acid residues important for virus assembly that might help explain the differences between HIV-1 and HIV-2. To do this, we conducted site-directed mutagenesis of targeted locations in the HIV-2 CA domain of Gag and analyzed various aspects of virus particle assembly. A panel of 31 site-directed mutants of residues that reside at the HIV-2 CA inter-hexamer interface, intra-hexamer interface and CA inter-domain linker were created and analyzed for their effects on the efficiency of particle production, particle morphology, particle infectivity, Gag subcellular distribution and in vitro protein assembly. Seven conserved residues between HIV-1 and HIV-2 (L19, A41, I152, K153, K157, N194, D196) and two non-conserved residues (G38, N127) were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations complement structural analyses of immature HIV-2 particle morphology and Gag lattice organization as well as provide important comparative insights into the key amino acid residues that can help explain the observed differences between HIV immature particle morphology and its association with virus replication and particle infectivity.


Subject(s)
Capsid Proteins , HIV-2 , gag Gene Products, Human Immunodeficiency Virus , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/genetics , HIV-1/genetics , HIV-2/genetics , Humans , Mutagenesis , Protein Conformation , Virus Assembly/genetics , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics
3.
Front Virol ; 22022.
Article in English | MEDLINE | ID: mdl-35783361

ABSTRACT

Studies of retroviruses have led to many extraordinary discoveries that have advanced our understanding of not only human diseases, but also molecular biology as a whole. The most recognizable human retrovirus, human immunodeficiency virus type 1 (HIV-1), is the causative agent of the global AIDS epidemic and has been extensively studied. Other human retroviruses, such as human immunodeficiency virus type 2 (HIV-2) and human T-cell leukemia virus type 1 (HTLV-1), have received less attention, and many of the assumptions about the replication and biology of these viruses are based on knowledge of HIV-1. Existing comparative studies on human retroviruses, however, have revealed that key differences between these viruses exist that affect evolution, diversification, and potentially pathogenicity. In this review, we examine current insights on disparities in the replication of pathogenic human retroviruses, with a particular focus on the determinants of structural and genetic diversity amongst HIVs and HTLV.

4.
J Mol Biol ; 433(18): 167111, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34153286

ABSTRACT

5-aza-cytidine (5-aza-C) has been shown to be a potent human immunodeficiency virus type 1 (HIV-1) mutagen that induces G-to-C hypermutagenesis by incorporation of the reduced form (i.e., 5-aza-dC, 5-aza-dCTP). Evidence to date suggests that this lethal mutagenesis is the primary antiretroviral mechanism for 5-aza-C. To investigate the breadth of application of 5-aza-C as an antiretroviral mutagen, we have conducted a comparative, parallel analysis of the antiviral mechanism of 5-aza-C between HIV-1 and gammaretroviruses - i.e., murine leukemia virus (MuLV) and feline leukemia virus (FeLV). Intriguingly, in contrast to the hallmark G-to-C hypermutagenesis observed with HIV-1, MuLV and FeLV did not reveal the presence of a significant increase in mutational burden, particularly that of G-to-C transversion mutations. The effect of 5-aza-dCTP on DNA synthesis revealed that while HIV-1 RT was not inhibited by 5-aza-dCTP even at 100 µM, 5-aza-dCTP was incorporated and significantly inhibited MuLV RT, generating pause sites and reducing the fully extended product. 5-aza-dCTP was found to be incorporated into DNA by MuLV RT or HIV-1 RT, but only acted as a non-obligate chain terminator for MuLV RT. This biochemical data provides an independent line of experimental evidence in support of the conclusion that HIV-1 and MuLV have distinct primary mechanisms of antiretroviral action with 5-aza-C. Taken together, our data provides striking evidence that an antiretroviral mutagen can have strong potency via distinct mechanisms of action among closely related viruses, unlinking antiviral activity from antiviral mechanism of action.


Subject(s)
Antiviral Agents/pharmacology , Azacitidine/analogs & derivatives , Cytidine Triphosphate/analogs & derivatives , HIV Infections/drug therapy , Leukemia, Experimental/drug therapy , Mutation/drug effects , Retroviridae Infections/drug therapy , Tumor Virus Infections/drug therapy , Animals , Azacitidine/pharmacology , Cats , Cytidine Triphosphate/pharmacology , HIV/drug effects , HIV Infections/virology , Humans , Leukemia Virus, Feline/drug effects , Leukemia Virus, Murine/drug effects , Leukemia, Experimental/virology , Mice , Mutagenesis , Mutagens , Retroviridae Infections/virology , Tumor Virus Infections/virology , Virus Replication
5.
ACS Chem Biol ; 16(3): 529-538, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33619959

ABSTRACT

Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that can cause severe paralytic neurologic disease and immune disorders as well as cancer. An estimated 20 million people worldwide are infected with HTLV-1, with prevalence reaching 30% in some parts of the world. In stark contrast to HIV-1, no direct acting antivirals (DAAs) exist against HTLV-1. The aspartyl protease of HTLV-1 is a dimer similar to that of HIV-1 and processes the viral polyprotein to permit viral maturation. We report that the FDA-approved HIV-1 protease inhibitor darunavir (DRV) inhibits the enzyme with 0.8 µM potency and provides a scaffold for drug design against HTLV-1. Analogs of DRV that we designed and synthesized achieved submicromolar inhibition against HTLV-1 protease and inhibited Gag processing in viral maturation assays and in a chronically HTLV-1 infected cell line. Cocrystal structures of these inhibitors with HTLV-1 protease highlight opportunities for future inhibitor design. Our results show promise toward developing highly potent HTLV-1 protease inhibitors as therapeutic agents against HTLV-1 infections.


Subject(s)
Antiviral Agents/chemistry , Aspartic Acid Endopeptidases/antagonists & inhibitors , Darunavir/analogs & derivatives , Human T-lymphotropic virus 1/drug effects , Protease Inhibitors/chemistry , Amino Acid Sequence , Antiviral Agents/pharmacology , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/genetics , Darunavir/pharmacology , Drug Discovery , Escherichia coli/genetics , Humans , Molecular Dynamics Simulation , Molecular Structure , Molecular Targeted Therapy , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation , Structure-Activity Relationship
6.
Cell Rep ; 31(10): 107749, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32521274

ABSTRACT

Many HIV strains downregulate the levels of CD4 receptor on the surface of infected cells to prevent superinfection. In contrast, the rare HIV-2UC1 strain is noncytopathic and has no effect on CD4 expression in infected cells but still replicates as efficiently as more cytopathic strains in peripheral blood mononuclear cells (PBMCs). Here, we show that HIV-2UC1 Env interactions with the CD4 receptor exhibit slow association kinetics, whereas the dissociation kinetics is within the range of cytopathic strains. Despite the resulting 10- to 100-fold decrease in binding affinity, HIV-2UC1 Envs exhibit long-lived activation state and efficient fusion activity. These observations suggest that HIV-2UC1 Envs evolved to balance low affinity with an improved and readily triggerable molecular machinery to mediate entry. Resistance to cold exposure, similar to many primary HIV-1 isolates, and to sCD4 neutralization suggests that HIV-2UC1 Envs preferentially sample a closed Env conformation. Our data provide insights into the mechanism of HIV entry.


Subject(s)
HIV-2/genetics , Protein Binding/genetics , Humans , Protein Conformation
7.
Nat Commun ; 11(1): 1516, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32471995

ABSTRACT

ESCRT-III proteins assemble into ubiquitous membrane-remodeling polymers during many cellular processes. Here we describe the structure of helical membrane tubes that are scaffolded by bundled ESCRT-III filaments. Cryo-ET reveals how the shape of the helical membrane tube arises from the assembly of two distinct bundles of helical filaments that have the same helical path but bind the membrane with different interfaces. Higher-resolution cryo-EM of filaments bound to helical bicelles confirms that ESCRT-III filaments can interact with the membrane through a previously undescribed interface. Mathematical modeling demonstrates that the interface described above is key to the mechanical stability of helical membrane tubes and helps infer the rigidity of the described protein filaments. Altogether, our results suggest that the interactions between ESCRT-III filaments and the membrane could proceed through multiple interfaces, to provide assembly on membranes with various shapes, or adapt the orientation of the filaments towards the membrane during membrane remodeling.


Subject(s)
Cell Membrane/chemistry , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/metabolism , Anisotropy , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Liposomes/ultrastructure , Models, Biological , Polymers/chemistry , Protein Structure, Secondary , Saccharomyces cerevisiae/metabolism
8.
Nat Struct Mol Biol ; 27(4): 392-399, 2020 04.
Article in English | MEDLINE | ID: mdl-32251413

ABSTRACT

The endosomal sorting complexes required for transport (ESCRTs) mediate diverse membrane remodeling events. These typically require ESCRT-III proteins to stabilize negatively curved membranes; however, recent work has indicated that certain ESCRT-IIIs also participate in positive-curvature membrane-shaping reactions. ESCRT-IIIs polymerize into membrane-binding filaments, but the structural basis for negative versus positive membrane remodeling by these proteins remains poorly understood. To learn how certain ESCRT-IIIs shape positively curved membranes, we determined structures of human membrane-bound CHMP1B-only, membrane-bound CHMP1B + IST1, and IST1-only filaments by cryo-EM. Our structures show how CHMP1B first polymerizes into a single-stranded helical filament, shaping membranes into moderate-curvature tubules. Subsequently, IST1 assembles a second strand on CHMP1B, further constricting the membrane tube and reducing its diameter nearly to the fission point. Each step of constriction thins the underlying bilayer, lowering the barrier to membrane fission. Our structures reveal how a two-component, sequential polymerization mechanism drives membrane tubulation, constriction and bilayer thinning.


Subject(s)
Cell Membrane/ultrastructure , Endosomal Sorting Complexes Required for Transport/ultrastructure , Oncogene Proteins/ultrastructure , Cell Membrane/chemistry , Cell Membrane/genetics , Cytokinesis/genetics , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/genetics , Endosomes/chemistry , Endosomes/genetics , Endosomes/ultrastructure , Humans , Membrane Proteins/genetics , Membrane Proteins/ultrastructure , Oncogene Proteins/chemistry , Oncogene Proteins/genetics , Polymerization , Protein Conformation
9.
Elife ; 62017 09 21.
Article in English | MEDLINE | ID: mdl-28933693

ABSTRACT

Dynamin, which mediates membrane fission during endocytosis, binds endophilin and other members of the Bin-Amphiphysin-Rvs (BAR) protein family. How endophilin influences endocytic membrane fission is still unclear. Here, we show that dynamin-mediated membrane fission is potently inhibited in vitro when an excess of endophilin co-assembles with dynamin around membrane tubules. We further show by electron microscopy that endophilin intercalates between turns of the dynamin helix and impairs fission by preventing trans interactions between dynamin rungs that are thought to play critical roles in membrane constriction. In living cells, overexpression of endophilin delayed both fission and transferrin uptake. Together, our observations suggest that while endophilin helps shape endocytic tubules and recruit dynamin to endocytic sites, it can also block membrane fission when present in excess by inhibiting inter-dynamin interactions. The sequence of recruitment and the relative stoichiometry of the two proteins may be critical to regulated endocytic fission.


Subject(s)
Acyltransferases/metabolism , Dynamin I/metabolism , Endocytosis , Membranes/drug effects , Acyltransferases/chemistry , Animals , Dynamin I/chemistry , Humans , Microscopy, Electron , Protein Conformation , Rats
10.
Science ; 350(6267): 1548-51, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26634441

ABSTRACT

The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure, and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 angstrom resolution cryogenic electron microscopy reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, charged multivesicular body protein 1B (CHMP1B) and increased sodium tolerance 1 (IST1). The inner strand comprises "open" CHMP1B subunits that interlock in an elaborate domain-swapped architecture and is encircled by an outer strand of "closed" IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively curved membranes in vitro and in vivo. Our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature.


Subject(s)
Endosomal Sorting Complexes Required for Transport/chemistry , Oncogene Proteins/chemistry , Biopolymers/chemistry , Cell Membrane/chemistry , Cell Membrane/ultrastructure , Cryoelectron Microscopy , Humans , Protein Structure, Secondary , Protein Structure, Tertiary
11.
Methods Cell Biol ; 128: 165-200, 2015.
Article in English | MEDLINE | ID: mdl-25997348

ABSTRACT

Building cells from their component parts will hinge upon our ability to reconstitute biochemical compartmentalization and exchange between membrane-delimited organelles. By contrast with our understanding of other cellular events, the mechanisms that govern membrane trafficking has lagged because the presence of phospholipid bilayers complicates the use of standard methods. This chapter describes in vitro methods for purifying, reconstituting, and visualizing membrane remodeling activities directly by electron cryomicroscopy.


Subject(s)
Acyltransferases/metabolism , Cell Membrane/metabolism , Cryoelectron Microscopy/methods , Dynamins/metabolism , Animals , Cell Line , Dynamins/biosynthesis , Endocytosis/physiology , Escherichia coli/metabolism , Lipid Bilayers , Protein Structure, Tertiary , Sf9 Cells , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL
...