Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Chem ; 12: 1407331, 2024.
Article in English | MEDLINE | ID: mdl-39086985

ABSTRACT

Background: Rearranged during transfection (RET), an oncogenic protein, is associated with various cancers, including non-small-cell lung cancer (NSCLC), papillary thyroid cancer (PTC), pancreatic cancer, medullary thyroid cancer (MTC), breast cancer, and colorectal cancer. Dysregulation of RET contributes to cancer development, highlighting the importance of identifying lead compounds targeting this protein due to its pivotal role in cancer progression. Therefore, this study aims to discover effective lead compounds targeting RET across different cancer types and evaluate their potential to inhibit cancer progression. Methods: This study used a range of computational techniques, including Phase database creation, high-throughput virtual screening (HTVS), molecular docking, molecular mechanics with generalized Born surface area (MM-GBSA) solvation, assessment of pharmacokinetic (PK) properties, and molecular dynamics (MD) simulations, to identify potential lead compounds targeting RET. Results: Initially, a high-throughput virtual screening of the ZINC database identified 2,550 compounds from a pool of 170,269. Subsequent molecular docking studies revealed 10 compounds with promising negative binding scores ranging from -8.458 to -7.791 kcal/mol. MM-GBSA analysis further confirmed the potential of four compounds to exhibit negative binding scores. MD simulations demonstrated the stability of CID 95842900, CID 137030374, CID 124958150, and CID 110126793 with the target receptors. Conclusion: These findings suggest that these selected four compounds have the potential to inhibit phosphorylated RET (pRET) tyrosine kinase activity and may represent promising candidates for the treatment of various cancers.

2.
Heliyon ; 10(12): e32791, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994097

ABSTRACT

In humans, FOXP gene family is involved in embryonic development and cancer progression. The FOXP4 (Forkhead box protein P4) gene belongs to this FOXP gene family. FOXP4 gene plays a crucial role in oncogenesis. Single nucleotide polymorphisms are biological markers and common determinants of human diseases. Mutations can largely affect the function of the corresponding protein. Therefore, the molecular mechanism of nsSNPs in the FOXP4 gene needs to be elucidated. Initially, the SNPs of the FOXP4 gene were extracted from the dbSNP database and a total of 23124 SNPs was found, where 555 nonsynonymous, 20525 intronic, 1114 noncoding transcript, 334 synonymous were obtained and the rest were unspecified. Then, a series of bioinformatics tools (SIFT, PolyPhen2, SNAP2, PhD SNP, PANTHER, I-Mutant2.0, MUpro, GOR IV, ConSurf, NetSurfP 2.0, HOPE, DynaMut2, GeneMANIA, STRING and Schrodinger) were used to explore the effect of nsSNPs on FOXP4 protein function and structural stability. First, 555 nsSNPs were analyzed using SIFT, of which 57 were found as deleterious. Following, PolyPhen2, SNAP2, PhD SNP and PANTHER analyses, 10 nsSNPs (rs372762294, rs141899153, rs142575732, rs376938850, rs367607523, rs112517943, rs140387832, rs373949416, rs373949416 and rs376160648) were common and observed as deleterious, damaging and diseases associated. Following that, using I-Mutant2.0 and MUpro servers, 7 nsSNPs were found to be the most unstable. GOR IV predicted that these seven nsSNPs affect protein structure by altering the protein contents of alpha helixes, extended strands, and random coils. Following DynaMut2, 5 nsSNPs showed a decrease in the ΔΔG value compared with the wild-type and were found to be responsible for destabilizing the corresponding protein. GeneMANIA and STRING network revealed interaction of FOXP4 with other genes. Finally, molecular dynamics simulation analysis revealed consistent fluctuation in RMSD and RMSF values, Rg and hydrogen bonds in the mutant proteins compared with WT, which might alter the functional and structural stability of the corresponding protein. As a result, the aforementioned integrated comprehensive bioinformatic analyses provide insight into how various nsSNPs of the FOXP4 gene change the structural and functional properties of the corresponding protein, potentially proceeding with the pathophysiology of human diseases.

3.
Sci Rep ; 14(1): 11607, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773180

ABSTRACT

Single nucleotide polymorphisms (SNPs) are one of the most common determinants and potential biomarkers of human disease pathogenesis. SNPs could alter amino acid residues, leading to the loss of structural and functional integrity of the encoded protein. In humans, members of the minichromosome maintenance (MCM) family play a vital role in cell proliferation and have a significant impact on tumorigenesis. Among the MCM members, the molecular mechanism of how missense SNPs of minichromosome maintenance complex component 6 (MCM6) contribute to DNA replication and tumor pathogenesis is underexplored and needs to be elucidated. Hence, a series of sequence and structure-based computational tools were utilized to determine how mutations affect the corresponding MCM6 protein. From the dbSNP database, among 15,009 SNPs in the MCM6 gene, 642 missense SNPs (4.28%), 291 synonymous SNPs (1.94%), and 12,500 intron SNPs (83.28%) were observed. Out of the 642 missense SNPs, 33 were found to be deleterious during the SIFT analysis. Among these, 11 missense SNPs (I123S, R207C, R222C, L449F, V456M, D463G, H556Y, R602H, R633W, R658C, and P815T) were found as deleterious, probably damaging, affective and disease-associated. Then, I123S, R207C, R222C, V456M, D463G, R602H, R633W, and R658C missense SNPs were found to be highly harmful. Six missense SNPs (I123S, R207C, V456M, D463G, R602H, and R633W) had the potential to destabilize the corresponding protein as predicted by DynaMut2. Interestingly, five high-risk mutations (I123S, V456M, D463G, R602H, and R633W) were distributed in two domains (PF00493 and PF14551). During molecular dynamics simulations analysis, consistent fluctuation in RMSD and RMSF values, high Rg and hydrogen bonds in mutant proteins compared to wild-type revealed that these mutations might alter the protein structure and stability of the corresponding protein. Hence, the results from the analyses guide the exploration of the mechanism by which these missense SNPs of the MCM6 gene alter the structural integrity and functional properties of the protein, which could guide the identification of ways to minimize the harmful effects of these mutations in humans.


Subject(s)
Minichromosome Maintenance Complex Component 6 , Mutation, Missense , Polymorphism, Single Nucleotide , Humans , Minichromosome Maintenance Complex Component 6/genetics , Computer Simulation , Molecular Dynamics Simulation
4.
RSC Adv ; 14(9): 6096-6111, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38370460

ABSTRACT

Christella dentata (Forssk.) Brownsey & Jermy has been commonly used in traditional medicinal practices but its effects on multi-drug-resistant (MDR) bacteria have remained unexplored. We aimed to assess the in vitro antibacterial potential of the ethanol extract of Christella dentata (EECD) against MDR Pseudomonas aeruginosa and to identify potential multi-targeting antibacterial phytocompounds through computer-aided drug design focusing on the LasR and LpxC proteins. PPS, FT-IR and GC-MS were used for profiling of the phytocompounds in EECD. The antimicrobial activity of EECD was assessed using in vitro agar well diffusion, disc diffusion, MIC and MBC. Computer-aided drug design was used to identify multi-targeting leads from GC-MS-annotated phytocompounds. EECD exhibited dose-dependent antibacterial activity and revealed the presence of 51 phytocompounds in GC-MS analysis. Among these, three phytocompounds; (2E,4E)-N-isobutylhexadeca-2,4-dienamide (CID 6442402), bicyclo[4.3.0]nonane, 2,2,6,7-tetramethyl-7-hydroxy- (CID 536446) and 1,4-diethylbenzene (CID 7734) were identified as promising antibacterial phytocompounds as they strongly bonded with LasR and LpxC. Of them, CID 536446 and CID 7734 exhibited multiple targeting abilities with LasR and LpxC. On further screening, both CID 536446 and CID 7734 exhibited favorable drug-able, pharmacokinetics and toxicity properties. Finally, molecular dynamics (MD) simulation proved the binding stability of bicyclo[4.3.0]nonane, 2,2,6,7-tetramethyl-7-hydroxy- and 1,4-diethylbenzene to active pockets of LasR and LpxC. The results of this study offer scientific validation for the traditional use of Christella dentata in bacterial infection-related diseases. It also suggests that bicyclo[4.3.0]nonane, 2,2,6,7-tetramethyl-7-hydroxy- and 1,4-diethylbenzene from Christella dentata might be responsible for the antibacterial activity and could act as phytopharmacological leads for the development of LasR and LpxC inhibitors against MDR P. aeruginosa.

5.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385482

ABSTRACT

The aim of this research is to examine possible neurological activity of methanol, ethyl acetate, and aqueous extracts of Hygrophila spinosa and identify possible lead compounds through in silico analysis. In vivo, neuropharmacological activity was evaluated by using four distinct neuropharmacological assessment assays. Previously reported GC-MS data and earlier literature were utilized to identify the phytochemicals present in Hygrophila spinosa. Computational studies notably molecular docking and molecular dynamic simulations were conducted with responsible receptors to assess the stability of the best interacting compound. Pharmacokinetics properties like absorption, distribution, metabolism, excretion, and toxicity were considered to evaluate the drug likeliness properties of the identified compounds. All the in vivo results support the notion that different extracts (methanol, ethyl acetate, and aqueous) of Hygrophila spinosa have significant (*p = 0.05) sedative-hypnotic, anxiolytic, and anti-depressant activity. Among all the extracts, specifically methanol extracts of Hygrophila spinosa (MHS 400 mg/kg.b.w.) showed better sedative, anxiolytic and antidepressant activity than aqueous and ethyl acetate extracts. In silico molecular docking analysis revealed that among 53 compounds 7 compounds showed good binding affinities and one compound, namely apomorphine (CID: 6005), surprisingly showed promising binding affinity to all the receptors . An analysis of molecular dynamics simulations confirmed that apomorphine (CID: 6005) had a high level of stability at the protein binding site. Evidence suggests that Hygrophila spinosa has significant sedative, anxiolytic, and antidepressant activity. In silico analysis revealed that a particular compound (apomorphine) is responsible for this action. Further research is required in order to establish apomorphine as a drug for anxiety, depression, and sleep disorders.Communicated by Ramaswamy H. Sarma.

6.
Medicine (Baltimore) ; 102(45): e35347, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37960765

ABSTRACT

Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, has long been found to be dysregulated in human lung adenocarcinomas (LUADs). Nevertheless, the function, mutational profile, epigenetic regulation, co-expression profile, and clinicopathological significance of the GPC3 gene in LUAD progression are not well understood. In this study, we analyzed cancer microarray datasets from publicly available databases using bioinformatics tools to elucidate the above parameters. We observed significant downregulation of GPC3 in LUAD tissues compared to their normal counterparts, and this downregulation was associated with shorter overall survival (OS) and relapse-free survival (RFS). Nevertheless, no significant differences in the methylation pattern of GPC3 were observed between LUAD and normal tissues, although lower promoter methylation was observed in male patients. GPC3 expression was also found to correlate significantly with infiltration of B cells, CD8+, CD4+, macrophages, neutrophils, and dendritic cells in LUAD. In addition, a total of 11 missense mutations were identified in LUAD patients, and ~1.4% to 2.2% of LUAD patients had copy number amplifications in GPC3. Seventeen genes, mainly involved in dopamine receptor-mediated signaling pathways, were frequently co-expressed with GPC3. We also found 11 TFs and 7 miRNAs interacting with GPC3 and contributing to disease progression. Finally, we identified 3 potential inhibitors of GPC3 in human LUAD, namely heparitin, gemcitabine and arbutin. In conclusion, GPC3 may play an important role in the development of LUAD and could serve as a promising biomarker in LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Male , Glypicans/genetics , Glypicans/metabolism , Clinical Relevance , Epigenesis, Genetic , Neoplasm Recurrence, Local/genetics , Adenocarcinoma of Lung/genetics , Lung Neoplasms/pathology , Prognosis
7.
Front Immunol ; 14: 1160260, 2023.
Article in English | MEDLINE | ID: mdl-37441076

ABSTRACT

Merkel cell carcinoma (MCC) is a rare neuroendocrine skin malignancy caused by human Merkel cell polyomavirus (MCV), leading to the most aggressive skin cancer in humans. MCV has been identified in approximately 43%-100% of MCC cases, contributing to the highly aggressive nature of primary cutaneous carcinoma and leading to a notable mortality rate. Currently, no existing vaccines or drug candidates have shown efficacy in addressing the ailment caused by this specific pathogen. Therefore, this study aimed to design a novel multiepitope vaccine candidate against the virus using integrated immunoinformatics and vaccinomics approaches. Initially, the highest antigenic, immunogenic, and non-allergenic epitopes of cytotoxic T lymphocytes, helper T lymphocytes, and linear B lymphocytes corresponding to the virus whole protein sequences were identified and retrieved for vaccine construction. Subsequently, the selected epitopes were linked with appropriate linkers and added an adjuvant in front of the construct to enhance the immunogenicity of the vaccine candidates. Additionally, molecular docking and dynamics simulations identified strong and stable binding interactions between vaccine candidates and human Toll-like receptor 4. Furthermore, computer-aided immune simulation found the real-life-like immune response of vaccine candidates upon administration to the human body. Finally, codon optimization was conducted on the vaccine candidates to facilitate the in silico cloning of the vaccine into the pET28+(a) cloning vector. In conclusion, the vaccine candidate developed in this study is anticipated to augment the immune response in humans and effectively combat the virus. Nevertheless, it is imperative to conduct in vitro and in vivo assays to evaluate the efficacy of these vaccine candidates thoroughly. These evaluations will provide critical insights into the vaccine's effectiveness and potential for further development.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Skin Neoplasms , Vaccines , Humans , Molecular Docking Simulation , Carcinoma, Merkel Cell/prevention & control , Viral Proteins , Epitopes, B-Lymphocyte
8.
Heliyon ; 9(3): e14387, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36942213

ABSTRACT

Mitochondrial dysfunction remains a pivotal mechanism in manifold neurodegenerative diseases. Mitochondrial homeostasis within the cell is an essential aspect of cell biology. Mitochondria, the power-generating organelle of the cell, have a dominant role in several processes associated with genomic integrity and cellular equilibrium. They are involved in maintaining optimal cell functioning and ensuring guidance against possible DNA damage, which could lead to mutations and the onset of diseases. Conversely, system perturbations, which could be due to environmental factors or senescence, induce changes in the physiological balance and result in mitochondrial function impairment. As a result, we present a general overview of the pathological pathways involved in Alzheimer's and Parkinson's diseases caused by changes in mitochondrial homeostasis. The focal point of this review is on mitochondrial dysfunction being a significant condition in the onset of neuronal disintegration. We explain the pathways associated with the dysfunction of the mitochondria, which are common among the most recurring neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Are mitochondrial dysfunctions an early event in the progression of neuropathological processes? We discovered that mtDNA mutation is a major contributor to the metabolic pathology of most neurological disorders, causing changes in genes important for physiological homeostasis. As a result, genetic changes in presenilin, Amyloid-, ABAD, DJ-1, PINK-1, PARKIN, alpha-synuclein, and other important controlling genes occur. Therefore, we suggest possible therapeutic solutions.

9.
BMC Med ; 21(1): 36, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36726141

ABSTRACT

BACKGROUND: Crimean-Congo hemorrhagic fever (CCHF) is a widespread disease transmitted to humans and livestock animals through the bite of infected ticks or close contact with infected persons' blood, organs, or other bodily fluids. The virus is responsible for severe viral hemorrhagic fever outbreaks, with a case fatality rate of up to 40%. Despite having the highest fatality rate of the virus, a suitable treatment option or vaccination has not been developed yet. Therefore, this study aimed to formulate a multiepitope vaccine against CCHF through computational vaccine design approaches. METHODS: The glycoprotein, nucleoprotein, and RNA-dependent RNA polymerase of CCHF were utilized to determine immunodominant T- and B-cell epitopes. Subsequently, an integrative computational vaccinology approach was used to formulate a multi-epitopes vaccine candidate against the virus. RESULTS: After rigorous assessment, a multiepitope vaccine was constructed, which was antigenic, immunogenic, and non-allergenic with desired physicochemical properties. Molecular dynamics (MD) simulations of the vaccine-receptor complex show strong stability of the vaccine candidates to the targeted immune receptor. Additionally, the immune simulation of the vaccine candidates found that the vaccine could trigger real-life-like immune responses upon administration to humans. CONCLUSIONS: Finally, we concluded that the formulated multiepitope vaccine candidates would provide excellent prophylactic properties against CCHF.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Viral Vaccines , Humans , Animals , Hemorrhagic Fever, Crimean/prevention & control , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Disease Outbreaks/prevention & control , Vaccination
10.
Int J Biol Macromol ; 191: 1114-1125, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34592225

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2), also known as peptidyl-dipeptidase A, belongs to the dipeptidyl carboxydipeptidases family has emerged as a potential antiviral drug target against SARS-CoV-2. Most of the ACE2 inhibitors discovered till now are chemical synthesis; suffer from many limitations related to stability and adverse side effects. However, natural, and selective ACE2 inhibitors that possess strong stability and low side effects can be replaced instead of those chemicals' inhibitors. To envisage structurally diverse natural entities as an ACE2 inhibitor with better efficacy, a 3D structure-based-pharmacophore model (SBPM) has been developed and validated by 20 known selective inhibitors with their correspondence 1166 decoy compounds. The validated SBPM has excellent goodness of hit score and good predictive ability, which has been appointed as a query model for further screening of 11,295 natural compounds. The resultant 23 hits compounds with pharmacophore fit score 75.31 to 78.81 were optimized using in-silico ADMET and molecular docking analysis. Four potential natural inhibitory molecules namely D-DOPA (Amb17613565), L-Saccharopine (Amb6600091), D-Phenylalanine (Amb3940754), and L-Mimosine (Amb21855906) have been selected based on their binding affinity (-7.5, -7.1, -7.1, and -7.0 kcal/mol), respectively. Moreover, 250 ns molecular dynamics (MD) simulations confirmed the structural stability of the ligands within the protein. Additionally, MM/GBSA approach also used to support the stability of molecules to the binding site of the protein that also confirm the stability of the selected four natural compounds. The virtual screening strategy used in this study demonstrated four natural compounds that can be utilized for designing a future class of potential natural ACE2 inhibitor that will block the spike (S) protein dependent entry of SARS-CoV-2 into the host cell.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/chemistry , Biological Products/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacokinetics , Antiviral Agents/toxicity , Binding Sites , Biological Products/pharmacokinetics , Biological Products/toxicity , Computer Simulation , Drug Evaluation, Preclinical/methods , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
11.
Molecules ; 26(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34443556

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly infectious zoonotic virus first reported into the human population in September 2012 on the Arabian Peninsula. The virus causes severe and often lethal respiratory illness in humans with an unusually high fatality rate. The N-terminal domain (NTD) of receptor-binding S1 subunit of coronavirus spike (S) proteins can recognize a variety of host protein and mediates entry into human host cells. Blocking the entry by targeting the S1-NTD of the virus can facilitate the development of effective antiviral drug candidates against the pathogen. Therefore, the study has been designed to identify effective antiviral drug candidates against the MERS-CoV by targeting S1-NTD. Initially, a structure-based pharmacophore model (SBPM) to the active site (AS) cavity of the S1-NTD has been generated, followed by pharmacophore-based virtual screening of 11,295 natural compounds. Hits generated through the pharmacophore-based virtual screening have re-ranked by molecular docking and further evaluated through the ADMET properties. The compounds with the best ADME and toxicity properties have been retrieved, and a quantum mechanical (QM) based density-functional theory (DFT) has been performed to optimize the geometry of the selected compounds. Three optimized natural compounds, namely Taiwanhomoflavone B (Amb23604132), 2,3-Dihydrohinokiflavone (Amb23604659), and Sophoricoside (Amb1153724), have exhibited substantial docking energy >-9.00 kcal/mol, where analysis of frontier molecular orbital (FMO) theory found the low chemical reactivity correspondence to the bioactivity of the compounds. Molecular dynamics (MD) simulation confirmed the stability of the selected natural compound to the binding site of the protein. Additionally, molecular mechanics generalized born surface area (MM/GBSA) predicted the good value of binding free energies (ΔG bind) of the compounds to the desired protein. Convincingly, all the results support the potentiality of the selected compounds as natural antiviral candidates against the MERS-CoV S1-NTD.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Quantum Theory , Antiviral Agents/metabolism , Biological Products/metabolism , Catalytic Domain , Drug Evaluation, Preclinical , Middle East Respiratory Syndrome Coronavirus/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL