Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Tuberculosis (Edinb) ; 145: 102477, 2024 03.
Article in English | MEDLINE | ID: mdl-38211498

ABSTRACT

Mycobacterium tuberculosis (Mtb) has evolved sophisticated surveillance mechanisms to neutralize the ROS-induces toxicity which otherwise would degrade a variety of biological molecules including proteins, nucleic acids and lipids. In the present study, we find that Mtb lacking the Rv0495c gene (ΔRv0495c) is presented with a highly oxidized cytosolic environment. The superoxide-induced lipid peroxidation resulted in altered colony morphology and loss of membrane integrity in ΔRv0495c. As a consequence, ΔRv0495c demonstrated enhanced susceptibility when exposed to various host-induced stress conditions. Further, as expected, we observed a mutant-specific increase in the abundance of transcripts that encode proteins involved in antioxidant defence. Surprisingly, despite showing a growth defect phenotype in macrophages, the absence of the Rv0495c enhanced the pathogenicity and augmented the ability of the Mtb to grow inside the host. Additionally, our study revealed that Rv0495c-mediated immunomodulation by the pathogen helps create a favorable niche for long-term survival of Mtb inside the host. In summary, the current study underscores the fact that the truce in the war between the host and the pathogen favours long-term disease persistence in tuberculosis. We believe targeting Rv0495c could potentially be explored as a strategy to potentiate the current anti-TB regimen.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Bacterial Proteins/metabolism , Tuberculosis/microbiology , Oxidation-Reduction , Homeostasis/physiology
2.
Res Microbiol ; 174(7): 104082, 2023.
Article in English | MEDLINE | ID: mdl-37244349

ABSTRACT

Transcription factors (TFs) of Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis, regulate a network of pathways that help prolong the survival of Mtb inside the host. In this study, we have characterized a transcription repressor gene (mce3R) from the TetR family, that encodes for Mce3R protein in Mtb. We demonstrated that the mce3R gene is dispensable for the growth of Mtb on cholesterol. Gene expression analysis suggests that the transcription of genes belonging to the mce3R regulon is independent of the carbon source. We found that, in comparison to the wild type, the mce3R deleted strain (Δmce3R) generated more intracellular ROS and demonstrated reduced susceptibility to oxidative stress. Total lipid analysis suggests that mce3R regulon encoded proteins modulate the biosynthesis of cell wall lipids in Mtb. Interestingly, the absence of Mce3R increased the frequency of generation of antibiotic persisters in Mtb and imparted in-vivo growth advantage phenotype in guinea pigs. In conclusion, genes belonging to the mce3R regulon modulate the frequency of generation of persisters in Mtb. Hence, targeting mce3R regulon encoded proteins could potentiate the current regimen by eliminating persisters during Mtb infection.

3.
mSystems ; 5(6)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33323416

ABSTRACT

The worldwide increase in the frequency of multidrug-resistant and extensively drug-resistant cases of tuberculosis is mainly due to therapeutic noncompliance associated with a lengthy treatment regimen. Depending on the drug susceptibility profile, the treatment duration can extend from 6 months to 2 years. This protracted regimen is attributed to a supposedly nonreplicating and metabolically inert subset of the Mycobacterium tuberculosis population, called "persisters." The mechanism underlying stochastic generation and enrichment of persisters is not fully known. We have previously reported that the utilization of host cholesterol is essential for mycobacterial persistence. In this study, we have demonstrated that cholesterol-induced activation of a RNase toxin (VapC12) inhibits translation by targeting proT tRNA in M. tuberculosis This results in cholesterol-specific growth modulation that increases the frequency of generation of the persisters in a heterogeneous M. tuberculosis population. Also, a null mutant strain of this toxin (ΔvapC12) demonstrated an enhanced growth phenotype in a guinea pig model of M. tuberculosis infection, depicting its role in disease persistence. Thus, we have identified a novel strategy through which cholesterol-specific activation of a toxin-antitoxin module in M. tuberculosis enhances persister formation during infection. The current findings provide an opportunity to target persisters, a new paradigm facilitating tuberculosis drug development.IMPORTANCE The current TB treatment regimen involves a combination of drugs administered for an extended duration that could last for 6 months to 2 years. This could lead to noncompliance and the emergence of newer drug resistance strains. It is widely perceived that the major culprits are the so-called nonreplicating and metabolically inactive "persister" bacteria. The importance of cholesterol utilization during the persistence stage of M. tuberculosis infection and its potential role in the generation of persisters is very intriguing. We explored the mechanism involved in the cholesterol-mediated generation of persisters in mycobacteria. In this study, we have identified a toxin-antitoxin (TA) system essential for the generation of persisters during M. tuberculosis infection. This study verified that M. tuberculosis strain devoid of the VapBC12 TA system failed to persist and showed a hypervirulent phenotype in a guinea pig infection model. Our studies indicate that the M. tuberculosis VapBC12 TA system acts as a molecular switch regulating persister generation during infection. VapBC12 TA system as a drug target offers opportunities to develop shorter and more effective treatment regimens against tuberculosis.

4.
Biochimie ; 177: 87-97, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32828823

ABSTRACT

Emerging observations suggest that ribosomal proteins (RPs) play important extra-ribosomal roles in maintenance of cellular homeostasis. However, the mechanistic insights into these processes have not been extensively explored, especially in pathogenic bacteria. Here, we present our findings on potential extra-ribosomal functions of Mycobacterium tuberculosis (Mtb) RPs. We observed that Mtb RpsB and RpsQ are differentially localized to cell wall fraction in M. tuberculosis (H37Rv), while their M. smegmatis (Msm) homologs are primarily cytosolic. Cellular fractionation of ectopically expressed Mtb RPs in surrogate host (M. smegmatis) also shows their association with cell membrane/cell wall without any gross changes in cell morphology. M. smegmatis expressing Mtb RpsB exhibited altered redox homeostasis, decreased drug-induced ROS, reduced cell wall permeability and increased tolerance to various proteotoxic stress (oxidative stress, SDS and starvation). Mtb RpsB expression was also associated with increased resistance specifically towards Isoniazid, Ethionamide and Streptomycin. The enhanced drug tolerance was specific to Mtb RpsB and not observed upon ectopic expression of M. smegmatis homolog (Msm RpsB). Interestingly, C-terminus deletion in Mtb RpsB affected its localization and reversed the stress-resilient phenotypes. We also observed that M. tuberculosis (H37Rv) with upregulated RpsB levels had higher intracellular survival in macrophage. All these observations hint towards existence of moonlighting roles of Mtb RpsB in imparting stress resilience to mycobacteria. This work open avenues for further exploration of alternative pathways associated with fitness and drug tolerance in mycobacteria.


Subject(s)
Bacterial Proteins/physiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Ribosomal Proteins/physiology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Cell Membrane/metabolism , Cell Wall/metabolism , Cytosol/metabolism , Drug Tolerance/genetics , Humans , Lipids/analysis , Macrophages/metabolism , Macrophages/microbiology , Mutant Proteins/chemistry , Mutant Proteins/physiology , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/metabolism , Oxidation-Reduction , Oxidative Stress/genetics , Permeability , Reactive Oxygen Species/metabolism , Ribosomal Proteins/chemistry , Ribosomes/chemistry , THP-1 Cells
5.
Sci Rep ; 8(1): 17359, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478257

ABSTRACT

Tuberculosis, caused by the obligate intracellular pathogen Mycobacterium tuberculosis (Mtb), is responsible for 2-3 million deaths annually worldwide. Intracellular adaptability, which is critical for long-term persistence, requires the pathogen to neutralize host-mediated insults. The iron-sulphur (Fe-S) cofactor is essential for many enzymes critical for such 'adaptation'. The Mtb genome harbors only one putative iron-sulphur cluster (ISC) operon (rv1460-66) predicted to be involved in the generation of the Fe-S cofactor. Except for rv1460, all other genes in this operon are anticipated to be essential. The current study investigated the role of rv1460, an sufR homologue of Mtb (sufRTB), in maintaining intracellular Fe homeostasis and its implications on mycobacterial pathogenesis. We found that Mtb ISC locus (rv1461-66) was transcribed as a single multigene transcript. We successfully generated the sufRTB null mutant strain (ΔsufRTB) of Mtb, suggesting nonessentiality of the gene under normal growth conditions. The mutant strain demonstrated enhanced biofilm generation and failed to grow under a low-Fe condition. Growth characterization studies indicated that SufRTB-mediated intracellular Fe homeostasis is essential for Mtb to persist in the host. Targeting mycobacterial persistence by inhibiting SufRTB protein activity may be a novel intervention strategy in tuberculosis treatment.


Subject(s)
Homeostasis/physiology , Iron/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Animals , Bacterial Proteins/genetics , Biofilms/growth & development , Homeostasis/genetics , Iron-Sulfur Proteins/genetics , Mice , Mice, Inbred C57BL , Operon/genetics , Tuberculosis/microbiology
6.
Sci Rep ; 8(1): 6126, 2018 Apr 12.
Article in English | MEDLINE | ID: mdl-29650986

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

7.
PLoS One ; 12(9): e0183060, 2017.
Article in English | MEDLINE | ID: mdl-28873466

ABSTRACT

The mycobacterial mel2 locus (mycobacterial enhanced infection locus, Rv1936-1941) is Mycobacterium marinum and M. tuberculosis specific, which can withstand reactive oxygen species (ROS) and reactive nitrogen species (RNS) induced stress. A library of over a million compounds was screened using in silico virtual ligand screening (VLS) to identify inhibitors against the modeled structure of MelF protein expressed by melF of mel2 locus so that M. marinum's ability to withstand ROS/RNS stress could be reduced. The top ranked 1000 compounds were further screened to identify 178 compounds to maximize the scaffold diversity by manually evaluating the interaction of each compound with the target site. M. marinum melF was cloned, expressed and purified as maltose binding protein (MBP)-tagged recombinant protein in Escherichia coli. After establishing the flavin dependent oxidoreductase activity of MelF (~ 84 kDa), the inhibitors were screened for the inhibition of enzyme activity of whole cell lysate (WCL) and the purified MelF. Amongst these, 16 compounds could significantly inhibit the enzyme activity of purified MelF. For the six best inhibitory compounds, the minimal inhibitory concentration (MIC) was determined to be 3.4-19.4 µM and 13.5-38.8 µM for M. marinum and M. tuberculosis, respectively. Similarly, the minimal bactericidal concentration (MBC) was determined to be 6.8-38.8 µM and 27-38.8 µM against M. marinum and M. tuberculosis, respectively. One compound each in combination with isoniazid (INH) also showed synergistic inhibitory effect against M. marinum and M. tuberculosis with no cytotoxicity in HeLa cells. Interestingly, these inhibitors did not display any non-specific protein-structure destabilizing effect. Such inhibitors targeting the anti-ROS/RNS machinery may facilitate the efficient killing of replicating and nonreplicating mycobacteria inside the host cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Drug Design , Mycobacterium marinum/drug effects , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Chromatography, High Pressure Liquid , Circular Dichroism , Cloning, Molecular , Colony Count, Microbial , Drug Evaluation, Preclinical , Enzyme Inhibitors/analysis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Flavins/metabolism , Kinetics , Linear Models , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium marinum/growth & development , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Protein Structure, Secondary , Structural Homology, Protein
8.
Sci Rep ; 7(1): 11521, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912539

ABSTRACT

Indiscriminate use of antibiotics globally has lead to an increase in emergence of drug-resistant pathogens under both nosocomial, as well as more worryingly, in community setting as well. Further, a decrease in the corporate interest and financial commitment has exerted increasing pressure on a rapidly dwindling antimicrobial drug discovery and developmental program. In this context, we have screened the Library of Pharmacologically Active Compounds (LOPAC, Sigma) against Staphylococcus aureus and Mycobacterium tuberculosis to identify potent novel antimicrobial molecules amongst non-antibiotic molecules. Microplate-based whole cell growth assay was performed to analyze the antimicrobial potency of the compounds against Staphylococcus aureus and Mycobacterium tuberculosis. We identified diphenyleneiodonium chloride, a potent inhibitor of NADH/NADPH oxidase, as a broad-spectrum antibiotic potently active against drug resistant strains of Staphylococcus aureus and Mycobacterium tuberculosis. Intriguingly, the diphenyleneiodonium chloride was also very effective against slow-growing non-replicating Mtb persisters. FIC index demonstrated a strongly synergistic interaction between diphenyleneiodonium chloride and Rifampicin while it did not interact with INH. The antimicrobial property of the diphenyleneiodonium chloride was further validated in vivo murine neutropenic thigh S. aureus infection model. Taken together, these findings suggest that Diphenyleneiodonium chloride can be potentially repurposed for the treatment of tuberculosis and staphylococcal infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Microbial Viability/drug effects , Mycobacterium tuberculosis/drug effects , Onium Compounds/pharmacology , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/administration & dosage , Disease Models, Animal , Drug Repositioning , Drug Synergism , Enzyme Inhibitors/administration & dosage , Mice , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Onium Compounds/administration & dosage , Rifampin/pharmacology , Staphylococcal Infections/drug therapy , Treatment Outcome , Tuberculosis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...