Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Tissue Cell ; 90: 102527, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181089

ABSTRACT

Chronic kidney disease (CKD) and end-stage renal disease (ESRD) are prevalent and debilitating conditions with a significant impact on patients' quality of life. In this study, we conducted a comprehensive investigation into the histological characteristics of renal progenitor/stem cells (RPCs), renal mesenchymal stem-like cells, and endothelial progenitor cells (EPCs) in CKD and ESRD patients. Additionally, we performed a molecular docking analysis to explore potential drug-receptor interactions involving common medications prescribed to CKD patients. Our histological examination revealed a noteworthy increase in the number of CD24- and CD133-positive cells in CKD and ESRD patients, representing RPCs. These cells are implicated in kidney repair and regeneration, underscoring their potential role in CKD management. Moreover, we observed an elevation in the number of EPCs within the kidneys of CKD and ESRD patients, suggesting a protective role of EPCs in kidney preservation. The molecular docking analysis unveiled intriguing insights into potential drug interventions. Notably, digoxin exhibited the highest in-silico binding affinity to numerous receptors associated with the functions of RPCs, renal mesenchymal stem-like cells, and EPCs, emphasizing the potential multifaceted effects of this cardiac glycoside in CKD patients. Other drugs, including apixaban, glimepiride, and glibenclamide, also displayed strong in-silico affinities to specific receptors, indicating their potential influence on various renal cell functions. In conclusion, this study provides valuable insights into the histological alterations in renal cell populations in CKD and ESRD patients and underscores the potential roles of RPCs and EPCs in kidney repair and preservation. The molecular docking analysis reveals the complex interactions between common drugs and renal cells, suggesting the need for further in-vitro and in-vivo research to fully understand these relationships. These findings contribute to our understanding of CKD and offer new avenues for research into potential therapeutic interventions.

3.
Int J Fertil Steril ; 18(Suppl 1): 60-70, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39033372

ABSTRACT

BACKGROUND: In this phase I clinical trial, our primary objective was to develop an innovative therapeutic approach utilizing autologous bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs) for the treatment of nonobstructive azoospermia (NOA). Additionally, we aimed to assess the feasibility and safety of this approach. MATERIALS AND METHODS: We recruited 80 participants in this non-randomized, open-label clinical trial, including patients undergoing NOA treatment using autologous BM-MSCs (n=40) and those receiving hormone therapy as a control group (n=40). Detailed participant characteristics, such as age, baseline hormonal profiles, etiology of NOA, and medical history, were thoroughly documented. Autotransplantation of BM-MSCs into the testicular network was achieved using microsurgical testicular sperm extraction (microTESE). Semen analysis and hormonal assessments were performed both before and six months after treatment. Additionally, we conducted an in-silico analysis to explore potential protein-protein interactions between exosomes secreted from BM-MSCs and receptors present in human seminiferous tubule cells. RESULTS: Our results revealed significant improvements following treatment, including increased testosterone and inhibin B levels, elevated sperm concentration, and reduced levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin. Notably, in nine patients (22.5%) previously diagnosed with secondary infertility and exhibiting azoospermia before treatment, the proposed approach yielded successful outcomes, as indicated by hormonal profile changes over six months. Importantly, these improvements were achieved without complications. Additionally, our in-silico analysis identified potential binding interactions between the protein content of BM-MSC-derived exosomes and receptors integral to spermatogenesis. CONCLUSION: Autotransplantation of BM-MSCs into the testicular network using microTESE in NOA patients led to the regeneration of seminiferous tubules and the regulation of hormonal profiles governing spermatogenesis. Our findings support the safety and effectiveness of autologous BM-MSCs as a promising treatment modality for NOA, with a particular focus on the achieved outcomes in patients with secondary infertility (registration number: IRCT20190519043634N1).

4.
Mar Pollut Bull ; 206: 116751, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053264

ABSTRACT

Marine environmental pollution is one of the growing concerns of humans all over the world. Therefore, managing these marine pollutants has been a crucial matter for scientists in recent decades. Thus, researchers have tried to implement artificial intelligence (AI) to handle marine environmental pollutants. Therefore, in this manuscript, we performed a bibliometric analysis to understand the main applications of AI for managing marine environments. Therefore, we examined both PubMed online database and Google Scholar to find any research articles that discuss the applications of AI in managing marine environmental pollution. Ultimately, we found that AI can detect, locate, and even predict aquatic contaminants like oil fingerprinting, oil spills, oil spill damage, oil slicks, forecasting marine water quality, water quality development, harmful algal blooms, benthic sediment toxicity, as well as detection of marine debris with high accuracy.


Subject(s)
Artificial Intelligence , Bibliometrics , Environmental Monitoring , Environmental Monitoring/methods
5.
Front Endocrinol (Lausanne) ; 15: 1365738, 2024.
Article in English | MEDLINE | ID: mdl-38836231

ABSTRACT

Hypertension, a multifaceted cardiovascular disorder influenced by genetic, epigenetic, and environmental factors, poses a significant risk for the development of coronary artery disease (CAD) in individuals with type 2 diabetes mellitus (T2DM). Epigenetic alterations, particularly in histone modifications, DNA methylation, and microRNAs, play a pivotal role in unraveling the complex molecular underpinnings of blood pressure regulation. This review emphasizes the crucial interplay between epigenetic attributes and hypertension, shedding light on the prominence of DNA methylation, both globally and at the gene-specific level, in essential hypertension. Additionally, histone modifications, including acetylation and methylation, emerge as essential epigenetic markers linked to hypertension. Furthermore, microRNAs exert regulatory influence on blood pressure homeostasis, targeting key genes within the aldosterone and renin-angiotensin pathways. Understanding the intricate crosstalk between genetics and epigenetics in hypertension is particularly pertinent in the context of its interaction with T2DM, where hypertension serves as a notable risk factor for the development of CAD. These findings not only contribute to the comprehensive elucidation of essential hypertension but also offer promising avenues for innovative strategies in the prevention and treatment of cardiovascular complications, especially in the context of T2DM.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Epigenesis, Genetic , Hypertension , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Coronary Artery Disease/genetics , Coronary Artery Disease/etiology , Hypertension/genetics , Hypertension/complications , Risk Factors , DNA Methylation , MicroRNAs/genetics , Animals
6.
Nat Prod Res ; : 1-8, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824422

ABSTRACT

Regenerative effects of sea anemone-derived exosomes on human foreskin fibroblasts (HFFs) were investigated. Water-based extracts from regenerating Aulactinia stella tissue were collected at various time points, and exosomes were extracted after inducing wounds. Both the extract and exosomes were tested on HFF for proliferation and in vitro wound healing. In silico analysis explored protein-protein docking between regenerative exosome proteins and HFF receptors. The MTT (3-(4,5-dimethylthiazol-2yl)-2,5 diphenyltetrazolium bromide proliferation assay and in vitro wound healing test of aquatic extract showed proliferative effects on HFF cell lines, with the 60 µg/mL concentration significantly enhancing cell migration. Exosomes were characterised. Exosomes showed a significantly positive effect on cell proliferation and migration at the 50 µg/mL concentration 48 h post-wound induction. In silico analysis revealed potential binding affinities between exosome proteins and HFF receptors. In conclusion, optimised concentrations of A. stella-derived exosomes exhibited positive effects on HFF regeneration and migration, suggesting their potential in accelerating wound healing.

7.
J Histotechnol ; : 1-17, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752929

ABSTRACT

FACT is a developed technique for clearing tissues that does not use acrylamide. Since the removal of lipids is crucial for transparency and efficient antibody staining throughout the tissue, especially for microscopy and imaging, it is a harmful process that can cause the loss of important biological molecules such as proteins. The FACT technique overcomes this by chemically bonding the membrane and intracellular proteins with the extracellular matrix, creating a massive 3D hydrogel matrix and providing structural support to fortify the tissue during processing. Compared to other acrylamide-based techniques, the FACT technique requires less labor and harmful chemicals and is therefore considered a more suitable option. In this study, we describe the complete FACT protocol for antibody staining and imaging of whole-cleared tissues while preserving structure and improving image quality. The protocol includes tissue perfusion, fixation, clearing, antibody staining, refractive index matching (RIM) (), microscopy, and imaging. The timing for each step varies depending on the size, weight, and type of tissue, as well as the type of immunostaining. We provide an example of the FACT protocol using mouse brain tissue, which demonstrates its suitability for molecular interrogation analysis of large tissues. The FACT technique has been successfully performed on different types of tissues, making it a favorable choice for a variety of applications.

8.
ACS Biomater Sci Eng ; 10(5): 3316-3330, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38619014

ABSTRACT

In this study, we propose a spatially patterned 3D-printed nanohydroxyapatite (nHA)/beta-tricalcium phosphate (ß-TCP)/collagen composite scaffold incorporating human dental pulp-derived mesenchymal stem cells (hDP-MSCs) for bone regeneration in critical-sized defects. We investigated angiogenesis and osteogenesis in a rabbit critical-sized mandibular defect model treated with this engineered construct. The critical and synergistic role of collagen coating and incorporation of stem cells in the regeneration process was confirmed by including a cell-free uncoated 3D-printed nHA/ß-TCP scaffold, a stem cell-loaded 3D-printed nHA/ß-TCP scaffold, and a cell-free collagen-coated 3D-printed nHA/ß-TCP scaffold in the experimental design, in addition to an empty defect. Posteuthanasia evaluations through X-ray analysis, histological assessments, immunohistochemistry staining, histomorphometry, and reverse transcription-polymerase chain reaction (RT-PCR) suggest the formation of substantial woven and lamellar bone in the cell-loaded collagen-coated 3D-printed nHA/ß-TCP scaffolds. Histomorphometric analysis demonstrated a significant increase in osteoblasts, osteocytes, osteoclasts, bone area, and vascularization compared to that observed in the control group. Conversely, a significant decrease in fibroblasts/fibrocytes and connective tissue was observed in this group compared to that in the control group. RT-PCR indicated a significant upregulation in the expression of osteogenesis-related genes, including BMP2, ALPL, SOX9, Runx2, and SPP1. The findings suggest that the hDP-MSC-loaded 3D-printed nHA/ß-TCP/collagen composite scaffold is promising for bone regeneration in critical-sized defects.


Subject(s)
Bone Regeneration , Calcium Phosphates , Ceramics , Hydrogels , Mandible , Neovascularization, Physiologic , Printing, Three-Dimensional , Tissue Scaffolds , Animals , Rabbits , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Humans , Ceramics/chemistry , Calcium Phosphates/chemistry , Hydrogels/chemistry , Osteogenesis/drug effects , Mesenchymal Stem Cells/metabolism , Collagen/chemistry , Durapatite/chemistry , Tissue Engineering/methods , Dental Pulp/cytology , Disease Models, Animal , Male , Angiogenesis
9.
Curr Pharm Des ; 30(20): 1578-1598, 2024.
Article in English | MEDLINE | ID: mdl-38676525

ABSTRACT

BACKGROUND: Ischemia-reperfusion Injury (IRI) is a complex pathophysiological process with severe consequences, including irreversible loss of renal function. Various intraoperative prevention methods have been proposed to mitigate the harmful effects of warm ischemia and kidney reperfusion. AIM: This comprehensive analysis provides an overview of pharmacological agents and intraoperative methods for preventing and treating renal IRI. METHODS: Our analysis revealed that eplerenone exhibited the highest binding affinity to crucial targets, including Aldehyde Dehydrogenase (AD), Estrogen Receptor (ER), Klotho protein, Mineralocorticoid Receptor (MR), and Toll-like Receptor 4 (TLR4). This finding indicates eplerenone's potential as a potent preventive agent against IRI, surpassing other available therapeutics like Benzodioxole, Hydrocortisone, Indoles, Nicotinamide adenine dinucleotide, and Niacinamide. In preventing kidney IRI, our comprehensive analysis emphasizes the significance of eplerenone due to its strong binding affinity to key targets involved in the pathogenesis of IRI. RESULTS: This finding positions eplerenone as a promising candidate for further clinical investigation and consideration for future clinical practice. CONCLUSION: The insights provided in this analysis will assist clinicians and researchers in selecting effective preventive approaches for renal IRI in surgical settings, potentially improving patient outcomes.


Subject(s)
Reperfusion Injury , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Humans , Animals , Computer Simulation , Kidney/drug effects , Kidney/metabolism
10.
Biomed Res Int ; 2024: 6761451, 2024.
Article in English | MEDLINE | ID: mdl-38659608

ABSTRACT

This bibliometric analysis explores the landscape of research on the associations between specific genotypes and the cardiovascular form of diabetic neuropathy. Diabetes mellitus (DM) is a major contributor to premature mortality, primarily due to increased susceptibility to cardiovascular diseases. The global prevalence of DM is rising, with projections indicating further increases. Diabetic neuropathy, a complication of DM, includes the cardiovascular subtype, posing challenges in diagnosis and management. Understanding the genetic basis of cardiovascular diabetic neuropathy is crucial for targeted therapeutic interventions. The study utilizes bibliometric analysis to synthesize existing literature, identify trends, and guide future research. The Scopus database was searched, applying inclusion criteria for English articles related to genotypes and cardiovascular diabetic neuropathy. The analysis reveals a dynamic field with a notable impact, collaborative efforts, and multidimensional aspects. Publication trends over 1997-2023 demonstrate fluctuating research intensity. Top journals, authors, and affiliations are highlighted, emphasizing global contributions. Keyword analysis reveals thematic trends, and citation analysis identifies influential documents. Limitations include database biases, incomplete metadata, and search query specificity. The urgent need to explore genetic factors in cardiovascular diabetic neuropathy aligns with the increasing global diabetes burden. This analysis provides a comprehensive overview, contributing to the broader discourse on diabetic neuropathy research.


Subject(s)
Bibliometrics , Cardiovascular Diseases , Diabetic Neuropathies , Genotype , Humans , Diabetic Neuropathies/genetics , Diabetic Neuropathies/epidemiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/epidemiology , Genetic Predisposition to Disease
11.
Early Hum Dev ; 192: 105992, 2024 May.
Article in English | MEDLINE | ID: mdl-38574696

ABSTRACT

BACKGROUND: Many infants who survive hypoxic-ischemic encephalopathy (HIE) face long-term complications like epilepsy, cerebral palsy, and developmental delays. Detecting and forecasting developmental issues in high-risk infants is critical. AIM: This study aims to assess the effectiveness of standardized General Movements Assessment (GMA) and Hammersmith Infant Neurological Examinations (HINE) in identifying nervous system damage and predicting neurological outcomes in infants with HIE. DESIGN: Prospective. SUBJECTS AND MEASURES: We examined full-term newborns with perinatal asphyxia, classifying them as Grade 2 HIE according to Sarnat and Sarnat. The study included 31 infants, with 14 (45.2 %) receiving therapeutic hypothermia (Group 1) and 17 (54.8 %) not (Group 2). We evaluated general movements during writhing and fidgety phases and conducted neurological assessments using the HINE. RESULTS: All infants exhibited cramped-synchronized - like movements, leading to cerebral palsy (CP) diagnosis. Three children in Group 1 and four in Group 2 lacked fidgety movements. During active movements, HINE and GMA showed high sensitivity and specificity, reaching 96 % and 100 % for all children. The ROC curve's area under the curve (AUC) was 0.978. CONCLUSION: Our study affirms HINE and GMA as effective tools for predicting CP in HIE-affected children. GMA exhibits higher sensitivity and specificity during fidgety movements. However, study limitations include a small sample size and data from a single medical institution, necessitating further research.


Subject(s)
Cerebral Palsy , Hypoxia-Ischemia, Brain , Humans , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/diagnosis , Male , Female , Infant, Newborn , Cerebral Palsy/diagnosis , Cerebral Palsy/physiopathology , Cerebral Palsy/therapy , Neurologic Examination/methods , Neurologic Examination/standards , Movement , Asphyxia Neonatorum/therapy , Asphyxia Neonatorum/diagnosis , Infant , Prospective Studies
12.
Ther Adv Chronic Dis ; 15: 20406223241233206, 2024.
Article in English | MEDLINE | ID: mdl-38440782

ABSTRACT

Background: Cervical cancer poses a considerable worldwide health issue, where infection with the human papillomavirus (HPV) plays a vital role as a risk factor. Photodynamic therapy (PDT) is a minimally invasive treatment for HPV-related cervical lesions, which uses photosensitizers and light to selectively destroy abnormal cells. Objectives: Our objective is to present a comprehensive overview of the different types of molecules employed in PDT to reduce the occurrence and fatality rates associated with cervical cancer. Design: Scoping review and bibliometric analysis. Methods: The article explores clinical trials investigating the efficacy of PDT in treating low-grade squamous intraepithelial lesion and high-grade squamous intraepithelial lesion, as well as preclinical approaches utilizing various molecules for PDT in cervical cancer. Furthermore, the article sheds light on potential molecules for PDT enhancement, examining their properties through computer modeling simulations, molecular docking, and assessing their advantages and disadvantages. Results: Our findings demonstrate that PDT holds promise as a therapeutic approach for treating cervical lesions associated with HPV and cervical cancer. Additionally, we observe that the utilization of diverse dye classes enhances the anticancer effects of PDT. Conclusion: Among the various molecules employed in PDT, functionalized fullerene exhibits a notable inclination toward overexpressed receptors in cervical cancer cells, making it a potential candidate for intensified use in PDT. However, further research is needed to evaluate its long-term effectiveness and safety.


Using light to treat cervical cancer: what you need to know Cervical cancer is a significant global health concern, often linked to the human papillomavirus (HPV). There is a less invasive treatment called photodynamic therapy (PDT), which employs light and special substances to target and destroy abnormal cells related to HPV. In this review, we aim to give you a comprehensive look at the different substances used in PDT to reduce the occurrence and severity of cervical cancer. We have examined clinical trials focusing on treating specific types of cervical lesions and explored preclinical approaches using various substances. We have also delved into computer simulations and molecular docking to understand the strengths and weaknesses of these substances. Our findings show that PDT has potential as a treatment for HPV-related cervical lesions and cancer. Different dye classes used in this therapy enhance its effectiveness against cancer. Notably, a substance called functionalized fullerene stands out for its tendency to target receptors overexpressed in cervical cancer cells. It looks promising, but more research is necessary to ensure its long-term effectiveness and safety.

13.
Front Public Health ; 12: 1333887, 2024.
Article in English | MEDLINE | ID: mdl-38420037

ABSTRACT

Introduction: The prevalence of non-communicable diseases (NCDs) is increasing worldwide. Several modifiable risk factors, such as smoking, alcohol drinking, physical inactivity, and obesity, have been linked to the development of NCDs in both genders. Understanding the prevalence of these risk factors and their associated factors is crucial for effective intervention planning in adult populations. This study aimed to provide an overview of the prevalence and associated factors of these risk behaviors among different genders of adults in West Kazakhstan. Methods: A cross-sectional study was conducted in four regions of West Kazakhstan. A stratified multistage sampling technique was utilized to obtain a representative sample size of 4,800 participants aged 18 -69 years. Trained researchers administered face-to-face interviews using validated questionnaires to gather information pertaining to sociodemographic characteristics, smoking habits, alcohol drinking, dietary patterns, physical activity levels, body mass index (BMI), and prevalent diseases. Results: This study, which included 4,800 participants from West Kazakhstan, revealed some striking numerical findings. The overall prevalence rates of behavioral risk factors and metabolic conditions were as follows: smoking was 13.6% (95%CI: 3.2-24.0%), alcohol drinking was 47.0% (27.7-66.3%), current obesity was 22.3% (9.0-35.6%), and physical inactivity was 80.7% (55.4-106.0%). In addition, the overall prevalence rates of metabolic conditions were 25.6% (11.3-39.9%) for hypertension, 7.5% (0.2-15.2%) for diabetes, 11.8% (2.1-21.5%) for high cholesterol, and 13.0% (2.8-23.2%) for cardiovascular diseases. Additionally, a higher prevalence of high cholesterol was observed in men, and a greater prevalence of heart disease was identified in women. Multinomial logistic regression revealed that physical inactivity was associated with hypertension, diabetes, and heart disease, while obesity was linked to hypertension, high cholesterol, and heart disease. Discussion: This study in West Kazakhstan identified variations in the prevalence of behavioral risk factors and NCDs, highlighting gender, age, and regional disparities. Notably, men showed higher rates of smoking and alcohol drinking, while women exhibited a greater prevalence of physical inactivity and obesity. Gender and regional differences were evident, with the West Kazakhstan region standing out for distinct patterns. Tailored interventions are crucial to address these disparities and enhance public health in the region.


Subject(s)
Diabetes Mellitus , Heart Diseases , Hypertension , Noncommunicable Diseases , Adult , Female , Humans , Male , Prevalence , Cross-Sectional Studies , Noncommunicable Diseases/epidemiology , Kazakhstan/epidemiology , Risk Factors , Obesity/epidemiology , Obesity/complications , Hypertension/epidemiology , Diabetes Mellitus/epidemiology , Cholesterol
14.
Early Hum Dev ; 188: 105924, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38142466

ABSTRACT

This bibliometric analysis provides an in-depth exploration of the scholarly landscape in the field of Prechtl General Movement Assessment (GMA) research, spanning the period from 1961 to 2023. It offers valuable insights into the evolutionary trajectory and global impact of GMA. The study employs a longitudinal approach, meticulously tracking trends in scholarly output, international collaborations, and authorship patterns. Notably, our findings reveal a significant increase in GMA-related publications, highlighting the growing prominence of this field. The dominance of Australia and Austria in scholarly contributions underscores their pivotal roles. International collaborations are prominent, with active participation from European nations and the Americas. However, it is essential to acknowledge certain limitations, including potential data source biases and a reliance on English-language publications. This analysis serves as a valuable resource for stakeholders in the field, emphasizing the need for ongoing evaluation and collaborative efforts to enhance GMA applications and further our understanding of its clinical implications.


Subject(s)
Bibliometrics , Movement , Humans , Australia , Language , Austria
15.
Diagnostics (Basel) ; 13(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38066798

ABSTRACT

The asymptomatic progression of chemotherapy-induced cardiotoxicity poses a significant risk to breast cancer patients. In the present single-center cohort study, a predictive model for evaluating the risk of cardiotoxicity during or by the end of chemotherapy was designed. The risk-prediction nomogram was delineated and assessed. In total, 34 patients out of 120 developed asymptomatic cardiotoxicity (28.3%). Of six explored biomarkers, only B-type natriuretic peptide showed a reliable pattern of incremental increase, revealing statistical significance between cardiotoxicity "+" and "-" groups by visit 4 or by the 9th month of monitoring (p 0.006). The following predictors were included in the model: age, hypertension, diabetes mellitus, baseline glomerular filtration rate, 6 min walk test measured at visit 4, BNP values at visit 4, left ventricular ejection fraction levels at visit 4, a total dose of radiotherapy received, and anthracycline cumulative doses. The model's AUC was 0.72 (95% CI 0.59; 0.86), evidencing the satisfactory predictive ability of the model; sensitivity 100% (95% CI 90.36; 100.0) at a specificity of 66.67% (95% CI 50.33; 79.79); PPV 54.1% [95% CI 47.13; 60.91]; PVN 100% [95% CI 94.64; 100.00]. The calibration plot showed satisfactory agreement between predicted and actual chances (p = 0.98). The designed model can be applied in settings lacking speckle tracking echocardiography.

17.
Bioimpacts ; 13(6): 495-504, 2023.
Article in English | MEDLINE | ID: mdl-38022384

ABSTRACT

Introduction: Premature ovarian insufficiency (POI) is a challenging issue in terms of reproduction biology. In this study, therapeutic properties of bone marrow CD146+ mesenchymal stem cells (MSCs) and CD144+ endothelial cells (ECs) were separately investigated in rats with POI. Methods: POI rats were classified into control POI, POI + CD146+ MSCs, and POI + CD144+ ECs groups. Enriched CD146+ MSCs and CD144+ ECs were directly injected into ovarian tissue (15 × 104 cells/10 µL) in relevant groups. After 4 weeks, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels were measured in blood samples. Ovarian tissues were collected and subjected to Hematoxylin-Eosin and Masson's trichrome staining. The expression of angp-2, vegfr-2, smad-2, -4, -6, and tgf-ß1 was studied using qRT-PCR analysis. Histopathological examination indicated an increased pattern of atretic follicles in the POI group related to the control rats (P<0.0001). Results: Data indicated that injection of POI + CD146+ MSCs and CD144+ ECs in POI rats reduced atretic follicles and increased the number of normal follicles (P<0.01). Along with these changes, the content of blue-colored collagen fibers was diminished after cell transplantation. Besides, cell transplantation in POI rats had the potential to reduce increased FSH, and LH levels (P<0.05). In contrast, E2 content was increased in POI + CD146+ MSCs and POI + CD144+ ECs groups compared to control POI rats, indicating restoration of follicular function. CD144+ (smad-2, and -4) and CD146+ (smad-6) cells altered the activity of genes belonging TGF-ß signaling pathway. Unlike POI + CD146+ MSCs, aberrant angiogenesis properties were significantly down-regulated in POI + CD144+ ECs related to the control POI group (P<0.05). Conclusion: The transplantation of bone marrow CD146+ and CD144+ cells can lead to the restoration of ovarian tissue function in POI rats via modulating different mechanisms associated with angiogenesis and fibrosis.

18.
Front Mol Biosci ; 10: 1221337, 2023.
Article in English | MEDLINE | ID: mdl-37900914

ABSTRACT

Introduction: Arterial hypertension (AH) is a pervasive global health concern with multifaceted origins encompassing both genetic and environmental components. Previous research has firmly established the association between AH and diverse genetic factors. Consequently, scientists have conducted extensive genetic investigations in recent years to unravel the intricate pathophysiology of AH. Methods: In this study, we conducted a comprehensive bibliometric analysis employing VOSviewer software to identify the most noteworthy genetic factors that have been the focal point of numerous investigations within the AH field in recent years. Our analysis revealed genes and microRNAs intricately linked to AH, underscoring their pivotal roles in this condition. Additionally, we performed molecular docking analyses to ascertain microRNAs with the highest binding affinity to these identified genes. Furthermore, we constructed a network to elucidate the in-silico-based functional interactions between the identified microRNAs and genes, shedding light on their potential roles in AH pathogenesis. Results: Notably, this pioneering in silico examination of genetic factors associated with AH promises novel insights into our understanding of this complex condition. Our findings prominently highlight miR-7110-5p, miR-7110-3p, miR-663, miR-328-3p, and miR-140-5p as microRNAs exhibiting a remarkable affinity for target genes. These microRNAs hold promise as valuable diagnostic and therapeutic factors, offering new avenues for the diagnosis and treatment of AH in the foreseeable future. Conclusion: In summary, this research underscores the critical importance of genetic factors in AH and, through in silico analyses, identifies specific microRNAs with significant potential for further investigation and clinical applications in AH management.

19.
Antibiotics (Basel) ; 12(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37760709

ABSTRACT

Antimicrobial resistance (AMR) is a pressing global concern, posing significant challenges to the effective treatment of infections, including pneumonia. This bibliometric analysis aims to investigate the research output on AMR among pneumonia pathogens from 2013 to 2023. Data were extracted from the Web of Science Core Collection (WOS-CC) using an inclusive search strategy. The analysis included 152 relevant studies published in 99 different sources, involving 988 authors and yielding an average of 16.33 citations per document over the past decade. The findings reveal a notable increase in research on AMR among pneumonia pathogens, indicating a growing awareness of this critical issue. Collaborative studies were prevalent, with the majority of authors engaging in joint research efforts. Bradford's Law identified twelve core journals that were instrumental in disseminating research in this field, with "Medicine" emerging as the most prolific journal. The USA and China emerged as the leading contributors, while Germany displayed a strong inclination towards collaborative research. Intermountain Medical Center, Saitama Medical University, and Udice-French Research Universities were the most productive institutions, and Yayan J. and Rasche K. were the top authors. Furthermore, the analysis identified commonly encountered microorganisms such as Acinetobacter baumanii and Klebsiella pneumoniae in the context of AMR. Time-based analysis of keywords highlighted the significance of terms like "community-acquired pneumonia" and "ventilator-associated pneumonia". Overall, this comprehensive study sheds light on the global research landscape of AMR among pneumonia pathogens. The insights gained from this analysis are essential for guiding future research priorities and collaborative efforts to combat AMR effectively and improve treatment outcomes for pneumonia and related infections. As the frequency of reports concerning resistance among pneumonia pathogens, notably A. baumannii and K. pneumoniae, continues to rise, there is an immediate requirement for pharmaceutical manufacturers and healthcare providers to respond proactively and ready themselves for the forthcoming implications of this matter. It also underscores the importance of knowledge dissemination and evidence-based interventions to address this growing public health challenge. However, the study acknowledges the limitations associated with using a single publication database and encourages the inclusion of data from other sources in future research.

20.
Tissue Cell ; 85: 102215, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37716177

ABSTRACT

Three-dimensional nanofiber scaffolds offer a promising method for simulating in vivo conditions within the laboratory. This study aims to investigate the influence of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold on the differentiation of human menstrual blood mesenchymal stromal/stem cells (MenSCs) into female germ cells. MenSCs were isolated and assigned to four culture groups: (i) MenSCs co-cultured with granulosa cells (GCs) using the scaffold (3D-T group), (ii) MenSCs using the scaffold alone (3D-C group), (iii) MenSCs co-cultured only with GCs (2D-T group), and (iv) MenSCs without co-culture or scaffold (2D-C group). Both MenSCs and GCs were independently cultured for two weeks before co-culturing was initiated. Flow cytometry was employed to characterize MenSCs based on positive markers (CD73, CD90, and CD105) and negative markers (CD45 and CD133). Additionally, flow cytometry and immunocytochemistry were used to characterize the GCs. Differentiated MenSCs were analyzed using real-time PCR and immunostaining. The real-time PCR results demonstrated significantly higher levels of VASA expression in the 3D-T group compared to the 3D-C, 2D-T, and 2D-C groups. Similarly, the SCP3 mRNA level in the 3D-T group was notably elevated compared to the 3D-C, 2D-T, and 2D-C groups. Moreover, the expression of GDF9 was significantly higher in the 3D-T group when compared to the 3D-C, 2D-T, and 2D-C groups. Immunostaining results revealed a lack of signal for VASA, SCP3, or GDF9 markers in the 2D-T group, while some cells in the 3D-T group exhibited positive staining for all these proteins. These findings suggest that the combination of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold with co-culturing GCs facilitates the differentiation of MenSCs into female germ cells.


Subject(s)
Fibroins , Mesenchymal Stem Cells , Female , Humans , Fibroins/chemistry , Tissue Scaffolds/chemistry , Amnion , Cell Differentiation , Germ Cells , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL