Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Science ; 378(6620): 646-650, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36356124

ABSTRACT

Magnetars are neutron stars with ultrastrong magnetic fields, which can be observed in x-rays. Polarization measurements could provide information on their magnetic fields and surface properties. We observed polarized x-rays from the magnetar 4U 0142+61 using the Imaging X-ray Polarimetry Explorer and found a linear polarization degree of 13.5 ± 0.8% averaged over the 2- to 8-kilo-electron volt band. The polarization changes with energy: The degree is 15.0 ± 1.0% at 2 to 4 kilo-electron volts, drops below the instrumental sensitivity ~4 to 5 kilo-electron volts, and rises to 35.2 ± 7.1% at 5.5 to 8 kilo-electron volts. The polarization angle also changes by 90° at ~4 to 5 kilo-electron volts. These results are consistent with a model in which thermal radiation from the magnetar surface is reprocessed by scattering off charged particles in the magnetosphere.

2.
Rev Sci Instrum ; 92(1): 013103, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33514202

ABSTRACT

We have succeeded in operating a transition-edge sensor (TES) spectrometer and evaluating its performance at the SPring-8 synchrotron x-ray light source. The TES spectrometer consists of a 240 pixel National Institute of Standards and Technology (NIST) TES system, and 220 pixels are operated simultaneously with an energy resolution of 4 eV at 6 keV at a rate of ∼1 c/s pixel-1. The tolerance for high count rates is evaluated in terms of energy resolution and live time fraction, leading to an empirical compromise of ∼2 × 103 c/s (all pixels) with an energy resolution of 5 eV at 6 keV. By utilizing the TES's wideband spectroscopic capability, simultaneous multi-element analysis is demonstrated for a standard sample. We conducted x-ray absorption near-edge structure (XANES) analysis in fluorescence mode using the TES spectrometer. The excellent energy resolution of the TES enabled us to detect weak fluorescence lines from dilute samples and trace elements that have previously been difficult to resolve due to the nearly overlapping emission lines of other dominant elements. The neighboring lines of As Kα and Pb Lα2 of the standard sample were clearly resolved, and the XANES of Pb Lα2 was obtained. Moreover, the x-ray spectrum from the small amount of Fe in aerosols was distinguished from the spectrum of a blank target, which helps us to understand the targets and the environment. These results are the first important step for the application of high resolution TES-based spectroscopy at hard x-ray synchrotron facilities.

3.
J Circadian Rhythms ; 7: 4, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19338660

ABSTRACT

In humans, chronic ethanol consumption leads to a characteristic set of changes to the metabolism of lipids in the liver that is referred to as an "alcoholic fatty liver (AFL)". In severe cases, these metabolic changes result in the enlargement and fibrillization of the liver and are considered risk factors for cirrhosis and liver cancer. Clock-mutant mice have been shown to display abnormal lipid metabolism and alcohol preferences. To further understand the potential interactions between ethanol consumption, lipid metabolism, and the circadian clock, we investigated the effect of chronic ethanol intake on the lipid metabolism of Clock-mutant mice. We found that ethanol treatment produced a number of changes in the liver of Clock-mutant mice without impacting the wild-type controls. First, we found that 8 weeks of exposure to ethanol in the drinking water increased the weight of the liver in Clock-mutant mice. Ethanol treatment also increased triglyceride content of liver in Clock-mutant and wild-type mice. This increase was larger in the mutant mice. Finally, ethanol treatment altered the expression of a number of genes related to lipid metabolism in the Clock-mutant mice. Interestingly, this treatment did not impact circadian clock gene expression in the liver of either genotype. Thus, ethanol produces a number of changes in the liver of Clock-mutant mice that are not seen in the wild-type mice. These changes are consistent with the possibility that disturbance of circadian rhythmicity associated with the Clock mutation could be a risk factor for the development of an alcoholic fatty liver.

4.
Am J Physiol Endocrinol Metab ; 294(1): E120-30, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17971517

ABSTRACT

Cholesterol (CH) homeostasis in the liver is regulated by enzymes of CH synthesis such as 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and catabolic enzymes such as cytochrome P-450, family 7, subfamily A, and polypeptide 1 (CYP7A1). Since a circadian clock controls the gene expression of these enzymes, these genes exhibit circadian rhythm in the liver. In this study, we examined the relationship between a diet containing CH and/or cholic acid (CA) and the circadian regulation of Hmgcr, low-density lipoprotein receptor (Ldlr), and Cyp7a1 gene expression in the mouse liver. A 4-wk CA diet lowered and eventually abolished the circadian expression of these genes. Not only clock genes such as period homolog 2 (Drosophila) (Per2) and brain and muscle arnt-like protein-1 (Bmal1) but also clock-controlled genes such as Hmgcr, Ldlr, and Cyp7a1 showed a reduced and arrhythmic expression pattern in the liver of Clock mutant mice. The reduced gene expression of Cyp7a1 in mice fed a diet containing CA or CH + CA was remarkable in the liver of Clock mutants compared with wild-type mice, and high liver CH accumulation was apparent in Clock mutant mice. In contrast, a CH diet without CA only elevated Cyp7a1 expression in both wild-type and Clock mutant mice. The present findings indicate that normal circadian clock function is important for the regulation of CH homeostasis in the mouse liver, especially in conjunction with a diet containing high CH and CA.


Subject(s)
Cholesterol, Dietary/pharmacokinetics , Cholic Acid/pharmacokinetics , Circadian Rhythm/physiology , Liver/metabolism , Trans-Activators/genetics , ARNTL Transcription Factors , Acyl Coenzyme A/genetics , Animal Feed , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Brain/physiology , CLOCK Proteins , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol, Dietary/blood , DNA-Binding Proteins/genetics , Gene Expression/physiology , Homeostasis/physiology , Male , Mice , Mice, Inbred ICR , Mice, Mutant Strains , Muscle, Skeletal/physiology , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Period Circadian Proteins , Receptors, LDL/genetics , Sterol Regulatory Element Binding Protein 2/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
J Biol Rhythms ; 22(4): 312-23, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17660448

ABSTRACT

Energy homeostasis is subjected to a circadian control that synchronizes energy intake and expenditure. The transcription factor CLOCK, a key component of the molecular circadian clock, controls many kinds of rhythms, such as those for locomotor activity, body temperature, and metabolic functions. The purpose of the present study is to understand the function of the Clock gene during lipid metabolism in the liver using Clock-mutant mice. Clock-mutant mice with an ICR background were fed a high-fat diet for 13 weeks, and liver triglyceride, serum triglyceride, and serum free fatty acid levels were examined. Triglyceride content in the liver was significantly less increased in Clock-mutant mice on a high-fat diet compared to wild-type mice on a high-fat diet. Acsl4 and Fabp1 mRNA levels in the liver showed daily rhythms in wild-type mice. In contrast, Clock -mutant mice had attenuated daily rhythms of Acsl4 and Fabp1 gene expression in the liver under both normal and high-fat diet conditions compared to wild-type mice. In Clock-mutant mice, suppression of Acsl4 and Fabp1 mRNA in the liver under high-fat diet conditions may have attenuated the accumulation of triglycerides in the liver compared to wild-type mice under the same conditions. In conclusion, the authors demonstrate that mice with a Clock mutation showed less triglyceride accumulation in the liver through the suppression of Acsl4 and Fabp1 gene expression when fed a high-fat diet compared to wild-type mice fed the same diet.


Subject(s)
Circadian Rhythm/physiology , Dietary Fats/administration & dosage , Fats/pharmacology , Gene Expression Regulation/drug effects , Triglycerides/blood , Animals , CLOCK Proteins , Dietary Fats/metabolism , Fatty Acids/analysis , Fatty Acids/metabolism , Gene Expression Regulation/genetics , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred ICR , Time Factors , Trans-Activators
SELECTION OF CITATIONS
SEARCH DETAIL
...