Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cancer Res Commun ; 3(5): 917-932, 2023 05.
Article in English | MEDLINE | ID: mdl-37377887

ABSTRACT

Tumor-infiltrating lymphocytes (TIL) that can recognize and kill tumor cells have curative potential in subsets of patients treated with adoptive cell transfer (ACT). However, lack of TIL therapeutic efficacy in many patients may be due in large part to a paucity of tumor-reactive T cells in TIL and the exhausted and terminally differentiated status of those tumor-reactive T cells. We sought to reprogram exhausted TIL that possess T-cell receptors (TCR) specific for tumor antigens into induced pluripotent stem cells (iPSC) to rejuvenate them for more potent ACT. We first attempted to reprogram tumor neoantigen-specific TIL by αCD3 Ab prestimulation which resulted in failure of establishing tumor-reactive TIL-iPSCs, instead, T cell-derived iPSCs from bystander T cells were established. To selectively activate and enrich tumor-reactive T cells from the heterogenous TIL population, CD8+ PD-1+ 4-1BB+ TIL population were isolated after coculture with autologous tumor cells, followed by direct reprogramming into iPSCs. TCR sequencing analysis of the resulting iPSC clones revealed that reprogrammed TIL-iPSCs encoded TCRs that were identical to the pre-identified tumor-reactive TCRs found in minimally cultured TIL. Moreover, reprogrammed TIL-iPSCs contained rare tumor antigen-specific TCRs, which were not detectable by TCR sequencing of the starting cell population. Thus, reprogramming of PD-1+ 4-1BB+ TIL after coculture with autologous tumor cells selectively generates tumor antigen-specific TIL-iPSCs, and is a distinctive method to enrich and identify tumor antigen-specific TCRs of low frequency from TIL. Significance: Reprogramming of TIL into iPSC holds great promise for the future treatment of cancer due to their rejuvenated nature and the retention of tumor-specific TCRs. One limitation is the lack of selective and efficient methods for reprogramming tumor-specific T cells from polyclonal TIL. Here we addressed this limitation and present a method to efficiently reprogram TIL into iPSC colonies carrying diverse tumor antigen reactive TCR recombination.


Subject(s)
Induced Pluripotent Stem Cells , Neoplasms , Humans , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , Antigens, Neoplasm
2.
Cell Rep Methods ; 3(4): 100460, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37159663

ABSTRACT

Although the differentiation of human induced pluripotent stem cells (hiPSCs) into various types of blood cells has been well established, approaches for clinical-scale production of multipotent hematopoietic progenitor cells (HPCs) remain challenging. We found that hiPSCs cocultured with stromal cells as spheroids (hematopoietic spheroids [Hp-spheroids]) can grow in a stirred bioreactor and develop into yolk sac-like organoids without the addition of exogenous factors. Hp-spheroid-induced organoids recapitulated a yolk sac-characteristic cellular complement and structures as well as the functional ability to generate HPCs with lympho-myeloid potential. Moreover, sequential hemato-vascular ontogenesis could also be observed during organoid formation. We demonstrated that organoid-induced HPCs can be differentiated into erythroid cells, macrophages, and T lymphocytes with current maturation protocols. Notably, the Hp-spheroid system can be performed in an autologous and xeno-free manner, thereby improving the feasibility of bulk production of hiPSC-derived HPCs in clinical, therapeutic contexts.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Yolk Sac , Hematopoietic Stem Cells , Organoids , Activities of Daily Living
4.
Stem Cell Res Ther ; 11(1): 493, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33234163

ABSTRACT

BACKGROUND: Ex vivo production of hematopoietic stem/precursor cells (HSPCs) represents a promising versatile approach for blood disorders. METHODS: To derive definitive HSPCs from human embryonic stem cells (ESCs), we differentiated mesodermally specified embryoid bodies (EBs) on gelatin-coated plates in serum/feeder-free conditions. RESULTS: Seven-day EB maturation followed by an 8-day differentiation period on OP9 cells provided the highest number of definitive (CD34+ CD235a-, 69%, p < 0.01) and lowest number of primitive (CD34- CD235a+, 1.55%, p < 0.01) precursor cells along with the highest colony-forming units (149.8 ± 11.6, p < 0.01) in feeder-free conditions. Maximal HSPC fraction (CD34+ CD38- CD45RA- CD49f+ CD90+) was 7.6-8.9% after 10 days of hematopoietic differentiation with 14.5% adult ß-globin expression following RBC differentiation. Myeloid and erythroid colonies were restricted strictly to the CD34+ CD43+ fraction (370.5 ± 65.7, p < 0.001), while the CD34- CD43+ fraction produced only a small number of colonies (21.6 ± 11.9). In addition, we differentiated the CD34+ CD43+ cells towards T-lymphocytes using the OP9/DLL1 co-culture system demonstrating double-positive T cells (CD4+ CD8+) with CD3+ expression displaying a broad T cell receptor (TCR) repertoire. Confocal imaging of organoid-like structures revealed a close association of CD31+ cells with CD34+ and CD43+ cells, suggesting a potential emergence of HSPCs through endothelial to hematopoietic transition. Furthermore, fluorescently labeled organoids exhibited the emergence of spherical non-attached cells from rare progenitors at the border of the organoid center. CONCLUSIONS: In summary, definitive HSPCs can be derived from ESCs through a dynamic cellular process from an organoid-like structure, where erythroid progeny are capable of producing adult hemoglobin and lymphoid progeny shows a diverse TCR repertoire.


Subject(s)
Hematopoietic Stem Cell Transplantation , Human Embryonic Stem Cells , Antigens, CD34 , Cell Differentiation , Hematopoietic Stem Cells , Humans , Organoids
5.
J Vis Exp ; (152)2019 10 24.
Article in English | MEDLINE | ID: mdl-31710026

ABSTRACT

The generation and expansion of functional T cells in vitro can lead to a broad range of clinical applications. One such use is for the treatment of patients with advanced cancer. Adoptive T cell transfer (ACT) of highly enriched tumor antigen-specific T cells has been shown to cause durable regression of metastatic cancer in some patients. However, during expansion, these cells may become exhausted or senescent, limiting their effector function and persistence in vivo. Induced pluripotent stem cell (iPSC) technology may overcome these obstacles by leading to in vitro generation of large numbers of less differentiated tumor antigen-specific T cells. Human iPSC (hiPSC) have the capacity to differentiate into any type of somatic cell, including lymphocytes, which retain the original T cell receptor (TCR) genomic rearrangement when a T cell is used as a starting cell. Therefore, reprogramming of human tumor antigen-specific T cells to hiPSC followed by redifferentiation to T cell lineage has the potential to produce rejuvenated tumor antigen-specific T cells. Described here is a method for generating tumor antigen-specific CD8αß+ single positive (SP) T cells from hiPSC using OP9/DLL1 co-culture system. This method is a powerful tool for in vitro T cell lineage generation and will facilitate the development of in vitro derived T cells for use in regenerative medicine and cell-based therapies.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , T-Lymphocytes/metabolism , Cell Differentiation , Humans
6.
J Vis Exp ; (150)2019 08 09.
Article in English | MEDLINE | ID: mdl-31449236

ABSTRACT

The inheritance of pre-rearranged T cell receptors (TCRs) and their epigenetic rejuvenation make induced pluripotent stem cell (iPSC)-derived T cells a promising source for adoptive T cell therapy (ACT). However, classical in vitro methods for producing regenerated T cells from iPSC result in either innate-like or terminally differentiated T cells, which are phenotypically and functionally distinct from naïve T cells. Recently, a novel three-dimensional (3D) thymic culture system was developed to generate a homogenous subset of CD8αß+ antigen-specific T cells with a naïve T cell-like functional phenotype, including the capacity for proliferation, memory formation, and tumor suppression in vivo. This protocol avoids aberrant developmental fates, allowing for the generation of clinically relevant iPSC-derived T cells, designated as iPSC-derived thymic emigrants (iTE), while also providing a potent tool to elucidate the subsequent functions necessary for T cell maturation after thymic selection.


Subject(s)
Antigens, Neoplasm/immunology , Cell Culture Techniques/methods , Induced Pluripotent Stem Cells/cytology , Thymus Gland/cytology , Thymus Gland/immunology , Animals , Cell Differentiation , Cell Line, Tumor , Mice , T-Lymphocytes/cytology , T-Lymphocytes/immunology
7.
J Bone Miner Metab ; 37(3): 467-474, 2019 May.
Article in English | MEDLINE | ID: mdl-30187276

ABSTRACT

The central nervous system in adult mammals does not heal spontaneously after spinal cord injury (SCI). However, SCI treatment has been improved recently following the development of cell transplantation therapy. We recently reported that fibroblast growth factor (FGF) 2-pretreated human dental pulp cells (hDPCs) can improve recovery in a rat model of SCI. This study aimed to investigate mechanisms underlying the curative effect of SCI enhanced via FGF2 pretreatment; we selected three hDPC lines upon screening for the presence of mesenchymal stem cell markers and of their functionality in a rat model of SCI, as assessed using the Basso, Beattie, and Bresnahan score of locomotor functional scale, electrophysiological tests, and morphological analyses. We identified FGF2-responsive genes via gene expression analyses in these lines. FGF2 treatment upregulated GABRB1, MMP1, and DRD2, which suggested to contribute to SCI or central the nervous system. In an expanded screening of additional lines, GABRB1 displayed rather unique and interesting behavior; two lines with the lowest sensitivity of GABRB1 to FGF2 treatment displayed an extremely minor effect in the SCI model. These findings provide insights into the role of FGF2-responsive genes, especially GABRB1, in recovery from SCI, using hDPCs treated with FGF2.


Subject(s)
Dental Pulp/cytology , Fibroblast Growth Factor 2/pharmacology , Gene Expression Regulation/drug effects , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Animals , Disease Models, Animal , Electrophysiological Phenomena/drug effects , Humans , Motor Activity/drug effects , Rats , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord Injuries/physiopathology
8.
Cell Rep ; 22(12): 3175-3190, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29562175

ABSTRACT

Induced pluripotent stem cell (iPSC)-derived T cells may provide future therapies for cancer patients, but those generated by current methods, such as the OP9/DLL1 system, have shown abnormalities that pose major barriers for clinical translation. Our data indicate that these iPSC-derived CD8 single-positive T cells are more like CD4+CD8+ double-positive T cells than mature naive T cells because they display phenotypic markers of developmental arrest and an innate-like phenotype after stimulation. We developed a 3D thymic culture system to avoid these aberrant developmental fates, generating a homogeneous subset of CD8αß+ antigen-specific T cells, designated iPSC-derived thymic emigrants (iTEs). iTEs exhibit phenotypic and functional similarities to naive T cells both in vitro and in vivo, including the capacity for expansion, memory formation, and tumor suppression. These data illustrate the limitations of current methods and provide a tool to develop the next generation of iPSC-based antigen-specific immunotherapies.


Subject(s)
Imaging, Three-Dimensional/methods , Induced Pluripotent Stem Cells/cytology , Thymus Gland/cytology , Cell Culture Techniques/methods , Cell Differentiation/physiology , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Thymus Gland/diagnostic imaging , Thymus Gland/immunology
9.
Sci Rep ; 7(1): 13500, 2017 10 18.
Article in English | MEDLINE | ID: mdl-29044129

ABSTRACT

Human dental pulp cells (DPCs), adherent cells derived from dental pulp tissues, are potential tools for cell transplantation therapy. However, little work has been done to optimize such transplantation. In this study, DPCs were treated with fibroblast growth factor-2 (FGF2) for 5-6 consecutive serial passages and were transplanted into the injury site immediately after complete transection of the rat spinal cord. FGF2 priming facilitated the DPCs to promote axonal regeneration and to improve locomotor function in the rat with spinal cord injury (SCI). Additional analyses revealed that FGF2 priming protected cultured DPCs from hydrogen-peroxide-induced cell death and increased the number of DPCs in the SCI rat spinal cord even 7 weeks after transplantation. The production of major neurotrophic factors was equivalent in FGF2-treated and untreated DPCs. These observations suggest that FGF2 priming might protect DPCs from the post-trauma microenvironment in which DPCs infiltrate and resident immune cells generate cytotoxic reactive oxygen species. Surviving DPCs could increase the availability of neurotrophic factors in the lesion site, thereby promoting axonal regeneration and locomotor function recovery.


Subject(s)
Dental Pulp/cytology , Fibroblast Growth Factor 2/pharmacology , Mesenchymal Stem Cell Transplantation/methods , Nerve Regeneration , Spinal Cord Injuries/therapy , Animals , Axon Guidance , Cells, Cultured , Female , Humans , Locomotion , Mesenchymal Stem Cells/drug effects , Rats , Rats, Wistar
10.
In Vitro Cell Dev Biol Anim ; 51(10): 1012-22, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26170225

ABSTRACT

Dental pulp cells (DPCs) of various species have been studied for their potentials of differentiation into functional neurons and secretion of neurotrophic factors. In canine, DPCs have only been studied for cell surface markers and differentiation, but there is little direct evidence for therapeutic potentials for neurological disorders. The present study aimed to further characterize canine DPCs (cDPCs), particularly focusing on their neuroregenerative potentials. It was also reported that superparamagnetic iron oxide (SPIO) particles were useful for labeling of MSCs and tracking with magnetic resonance imaging (MRI). Our data suggested that cDPCs hold higher proliferation capacity than bone marrow stromal cells, the other type of mesenchymal stem cells which have been the target of intensive research. Canine DPCs constitutively expressed neural markers, suggesting a close relationship to the nervous system in their developmental origin. Canine DPCs promoted neuritogenesis of PC12 cells, most likely through secretion of neurotrophic factors. Furthermore, SPIO nanoparticles could be effectively transported to cDPCs without significant cytotoxicity and unfavorable effects on neuritogenesis. SPIO-labeled cDPCs embedded in agarose spinal cord phantoms were successfully visualized with a magnetic resonance imaging arousing a hope for noninvasive cell tracking in transplantation studies.


Subject(s)
Cell Tracking/methods , Dental Pulp/cytology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Nerve Regeneration/physiology , Neurogenesis/physiology , Animals , Bone Marrow Cells/physiology , Cell Line , Cell Proliferation/physiology , Cell Survival , Dental Pulp/physiology , Dextrans , Dogs , Ferric Compounds , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles , Metal Nanoparticles , Nerve Growth Factors/genetics , Neurites/physiology , PC12 Cells , Phantoms, Imaging , Rats
11.
Neurosci Lett ; 589: 92-7, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25597290

ABSTRACT

The purpose of this study was to clarify the effect of Chinese propolis on the expression level of neurotrophic factors in dental pulp cells (DPCs). We also investigated that the effects of the conditioned medium (CM) of DPCs stimulated by the propolis against oxidative and endoplasmic reticulum (ER) stresses in human neuroblastoma SH-SY5Y cells, and on neurite extensions in rat adrenal pheochromocytoma PC12 cells. To investigate the effect of the propolis on the levels of neurotrophic factors in DPCs, we performed a qRT-PCR experiment. As results, NGF, but not BDNF and NT-3, in DPCs was significantly elevated by the propolis in a concentration-dependent manner. H2O2-induced cell death was significantly inhibited by the treatment with the CM of DPCs. In addition, the treatment with the propolis-stimulated CM of DPCs had a more protective effect than that with the CM of DPCs. We also examine the effect of the propolis-stimulated CM of DPCs against a tunicamycin-induced ER stress. The treatment with the propolis-stimulated CM as well as the CM of DPCs significantly inhibited tunicamycin-induced cell death. Moreover, the treatment with the propolis-stimulated CM of DPCs significantly induced neurite outgrowth from PC12 cells than that with the CM of DPCs. These results suggest that the CM of DPCs as well as DPCs will be an efficient source of new treatments for neurodegenerative diseases and that the propolis promote the advantage of the CM of DPCs via producing neurotrophic factors.


Subject(s)
Culture Media, Conditioned/pharmacology , Dental Pulp/drug effects , Nerve Growth Factors/metabolism , Neurites/drug effects , Neuroprotective Agents/pharmacology , Propolis/pharmacology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Culture Media, Conditioned/metabolism , Dental Pulp/cytology , Dental Pulp/metabolism , Dogs , Endoplasmic Reticulum Stress/drug effects , Humans , Nerve Growth Factor/metabolism , Neurites/physiology , Oxidative Stress/drug effects , Rats
12.
Sci Rep ; 4: 7283, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25471527

ABSTRACT

The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by defined transcription factors has been a well-established technique and will provide an invaluable resource for regenerative medicine. However, the low reprogramming efficiency of human iPSC is still a limitation for clinical application. Here we showed that the reprogramming potential of human dental pulp cells (DPCs) obtained from immature teeth is much higher than those of mature teeth DPCs. Furthermore, immature teeth DPCs can be reprogrammed by OCT3/4 and SOX2, conversely these two factors are insufficient to convert mature teeth DPCs to pluripotent states. Using a gene expression profiles between these two DPC groups, we identified a new transcript factor, distal-less homeobox 4 (DLX4), which was highly expressed in immature teeth DPCs and significantly promoted human iPSC generation in combination with OCT3/4, SOX2, and KLF4. We further show that activation of TGF-ß signaling suppresses the expression of DLX4 in DPCs and impairs the iPSC generation of DPCs. Our findings indicate that DLX4 can functionally replace c-MYC and supports efficient reprogramming of immature teeth DPCs.


Subject(s)
Genes, Homeobox/genetics , Homeodomain Proteins/genetics , Induced Pluripotent Stem Cells/physiology , Transcription Factors/genetics , Cells, Cultured , Cellular Reprogramming/genetics , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Octamer Transcription Factor-3/genetics , Proto-Oncogene Proteins c-myc/genetics , SOXB1 Transcription Factors/genetics , Transcriptome/genetics , Transforming Growth Factor beta/genetics
13.
PLoS One ; 9(12): e115392, 2014.
Article in English | MEDLINE | ID: mdl-25521610

ABSTRACT

Human dental pulp cells (hDPCs) are a promising resource for regenerative medicine and tissue engineering and can be used for derivation of induced pluripotent stem cells (iPSCs). However, current protocols use reagents of animal origin (mainly fetal bovine serum, FBS) that carry the potential risk of infectious diseases and unwanted immunogenicity. Here, we report a chemically defined protocol to isolate and maintain the growth and differentiation potential of hDPCs. hDPCs cultured under these conditions showed significantly less primary colony formation than those with FBS. Cell culture under stringently defined conditions revealed a donor-dependent growth capacity; however, once established, the differentiation capabilities of the hDPCs were comparable to those observed with FBS. DNA array analyses indicated that the culture conditions robustly altered hDPC gene expression patterns but, more importantly, had little effect on neither pluripotent gene expression nor the efficiency of iPSC induction. The chemically defined culture conditions described herein are not perfect serum replacements, but can be used for the safe establishment of iPSCs and will find utility in applications for cell-based regenerative medicine.


Subject(s)
Dental Pulp/cytology , Induced Pluripotent Stem Cells/cytology , Adolescent , Cell Differentiation , Cells, Cultured , Humans , Primary Cell Culture/methods
14.
Mol Clin Oncol ; 2(3): 429-434, 2014 May.
Article in English | MEDLINE | ID: mdl-24772313

ABSTRACT

Lifestyle, particularly smoking and alcohol consumption, may induce and/or inhibit drug metabolism. In order to reveal the effects of smoking and alcohol consumption on the 5-fluorouracil (5-FU)-related metabolic enzymes, namely thymidylate synthase, dihydropyrimidine dehydrogenase (DPD; a sole catabolic enzyme of 5-FU), orotate phosphoribosyl transferase (OPRT) and thymidine phosphorylase, in oral squamous cell carcinomas, the mRNA expression of these enzymes was investigated in 29 surgical specimens and compared by the Brinkman index and drinking years. The surgical specimens were divided into normal and tumor regions and were independently analyzed using quantitative reverse transcription-polymerase chain reaction. There was a significantly positive correlation between DPD mRNA expression in these tissues and Brinkman index/drinking years, with OPRT mRNA expression being significantly correlated to the Brinkman index in tumor tissues. These results revealed that lifestyle habits, including smoking and alcohol consumption, may vary the activity of the 5-FU-related metabolic enzymes. DPD is the initial and rate-limiting enzyme in the catabolic pathway of 5-FU. Therefore, smoking and alcohol consumption may reduce the anticancer activity of 5-FU, possibly through the induction of DPD activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...