Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Heart Assoc ; 13(8): e033290, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38591330

ABSTRACT

BACKGROUND: Noninvasive pulse waveform analysis is valuable for central cardiovascular assessment, yet controversies persist over its validity in peripheral measurements. Our objective was to compare waveform features from a cuff system with suprasystolic blood pressure hold with an invasive aortic measurement. METHODS AND RESULTS: This study analyzed data from 88 subjects undergoing concurrent aortic catheterization and brachial pulse waveform acquisition using a suprasystolic blood pressure cuff system. Oscillometric blood pressure (BP) was compared with invasive aortic systolic BP and diastolic BP. Association between cuff and catheter waveform features was performed on a set of 15 parameters inclusive of magnitudes, time intervals, pressure-time integrals, and slopes of the pulsations. The evaluation covered both static (subject-averaged values) and dynamic (breathing-induced fluctuations) behaviors. Peripheral BP values from the cuff device were higher than catheter values (systolic BP-residual, 6.5 mm Hg; diastolic BP-residual, 12.4 mm Hg). Physiological correction for pressure amplification in the arterial system improved systolic BP prediction (r2=0.83). Dynamic calibration generated noninvasive BP fluctuations that reflect those invasively measured (systolic BP Pearson R=0.73, P<0.001; diastolic BP Pearson R=0.53, P<0.001). Static and dynamic analyses revealed a set of parameters with strong associations between catheter and cuff (Pearson R>0.5, P<0.001), encompassing magnitudes, timings, and pressure-time integrals but not slope-based parameters. CONCLUSIONS: This study demonstrated that the device and methods for peripheral waveform measurements presented here can be used for noninvasive estimation of central BP and a subset of aortic waveform features. These results serve as a benchmark for central cardiovascular assessment using suprasystolic BP cuff-based devices and contribute to preserving system dynamics in noninvasive measurements.


Subject(s)
Arterial Pressure , Blood Pressure Determination , Humans , Blood Pressure/physiology , Arterial Pressure/physiology , Blood Pressure Determination/methods , Aorta/physiology , Catheterization
2.
Ann Biomed Eng ; 51(11): 2617-2628, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37479898

ABSTRACT

Cuff-based pulse waveform acquisition (CBPWA) devices are reliable solutions for non-invasive cardiovascular diagnostics. However, poor signal resolution has limited clinical applications. This study aims to demonstrate the improved signal quality of CBPWA devices by implementing passive pneumatic low-pass filters (pLPF). Conventionally, pressure sensor output resolution is a percentage of the operating range. Therefore, measurement of small pressure changes in a large range must sacrifice signal resolution to accommodate for the large mean pressures. We design a pLPF to obtain the running mean pressure and combine it with a high-resolution differential pressure sensor for isolating the signal's pulsatile component. Thirty-one volunteers participated in a device proof-of-concept study at Caltech. Volunteers were measured at rest in the supine position on the left arm. The filtering behavior is mathematically modeled and experimentally verified, showing good agreement between measured and predicted cutoff frequencies. In the human study, the device successfully captured high-fidelity pulse waveform measurements for all volunteers: a blood pressure (BP) reading was followed by inflate-and-hold acquisition in diastolic BP (DBP), mean arterial pressure (MAP), and supra systolic BP (sSBP). The study demonstrated the reliability and high signal resolution of pLPF for CBPWA. Considering the widespread use of the brachial cuff, a system for high-resolution CBPWA motivates the clinical implementation of non-invasive pulse waveform analysis (PWA).

3.
Biofabrication ; 11(2): 021001, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30721899

ABSTRACT

Cell migration, critical to numerous biological processes, can be guided by surface topography. Studying the effects of topography on cell migration is valuable for enhancing our understanding of directional cell migration and for functionally engineering cell behavior. However, fabrication limitations constrain topography studies to geometries that may not adequately mimic physiological environments. Direct Laser Writing (DLW) provides the necessary 3D flexibility and control to create well-defined waveforms with curvature and length scales that are similar to those found in physiological settings, such as the luminal walls of blood vessels that endothelial cells migrate along. We find that endothelial cells migrate fastest along square waves, intermediate along triangular waves, and slowest along sine waves and that directional cell migration on sine waves decreases as sinusoid wavelength increases. Interestingly, inhibition of Rac1 decreases directional migration on sine wave topographies but not on flat surfaces with micropatterned lines, suggesting that cells may utilize different molecular pathways to sense curved topographies. Our study demonstrates that DLW can be employed to investigate the effects and mechanisms of topography on cell migration by fabricating a wide array of physiologically-relevant surfaces with curvatures that are challenging to fabricate using conventional manufacturing techniques.


Subject(s)
Cell Movement , Imaging, Three-Dimensional , Lasers , Fibronectins/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...