Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 294(46): 17249-17261, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31562243

ABSTRACT

The anaphase-promoting complex/cyclosome (APC/C) is a large, multisubunit ubiquitin ligase involved in regulation of cell division. APC/C substrate specificity arises from binding of short degron motifs in its substrates to transient activator subunits, Cdc20 and Cdh1. The destruction box (D-box) is the most common APC/C degron and plays a crucial role in substrate degradation by linking the activator to the Doc1/Apc10 subunit of core APC/C to stabilize the active holoenzyme and promote processive ubiquitylation. Degrons are also employed as pseudosubstrate motifs by APC/C inhibitors, and pseudosubstrates must bind their cognate activators tightly to outcompete substrate binding while blocking their own ubiquitylation. Here we examined how APC/C activity is suppressed by the small pseudosubstrate inhibitor Acm1 from budding yeast (Saccharomyces cerevisiae). Mutation of a conserved D-box converted Acm1 into an efficient ABBA (cyclin A, BubR1, Bub1, Acm1) motif-dependent APC/CCdh1 substrate in vivo, suggesting that this D-box somehow inhibits APC/C. We then identified a short conserved sequence at the C terminus of the Acm1 D-box that was necessary and sufficient for APC/C inhibition. In several APC/C substrates, the corresponding D-box region proved to be important for their degradation despite poor sequence conservation, redefining the D-box as a 12-amino acid motif. Biochemical analysis suggested that the Acm1 D-box extension inhibits reaction processivity by perturbing the normal interaction with Doc1/Apc10. Our results reveal a simple, elegant mode of pseudosubstrate inhibition that combines high-affinity activator binding with specific disruption of Doc1/Apc10 function in processive ubiquitylation.


Subject(s)
Apc10 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Motifs , Cell Cycle , Cell Cycle Proteins/chemistry , Protein Interaction Maps , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/chemistry , Substrate Specificity , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL