Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
JMIR AI ; 3: e52190, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190905

ABSTRACT

BACKGROUND: Predicting hospitalization from nurse triage notes has the potential to augment care. However, there needs to be careful considerations for which models to choose for this goal. Specifically, health systems will have varying degrees of computational infrastructure available and budget constraints. OBJECTIVE: To this end, we compared the performance of the deep learning, Bidirectional Encoder Representations from Transformers (BERT)-based model, Bio-Clinical-BERT, with a bag-of-words (BOW) logistic regression (LR) model incorporating term frequency-inverse document frequency (TF-IDF). These choices represent different levels of computational requirements. METHODS: A retrospective analysis was conducted using data from 1,391,988 patients who visited emergency departments in the Mount Sinai Health System spanning from 2017 to 2022. The models were trained on 4 hospitals' data and externally validated on a fifth hospital's data. RESULTS: The Bio-Clinical-BERT model achieved higher areas under the receiver operating characteristic curve (0.82, 0.84, and 0.85) compared to the BOW-LR-TF-IDF model (0.81, 0.83, and 0.84) across training sets of 10,000; 100,000; and ~1,000,000 patients, respectively. Notably, both models proved effective at using triage notes for prediction, despite the modest performance gap. CONCLUSIONS: Our findings suggest that simpler machine learning models such as BOW-LR-TF-IDF could serve adequately in resource-limited settings. Given the potential implications for patient care and hospital resource management, further exploration of alternative models and techniques is warranted to enhance predictive performance in this critical domain. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1101/2023.08.07.23293699.

2.
J Clin Med ; 11(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498463

ABSTRACT

BACKGROUND AND AIM: We analyzed an inclusive gradient boosting model to predict hospital admission from the emergency department (ED) at different time points. We compared its results to multiple models built exclusively at each time point. METHODS: This retrospective multisite study utilized ED data from the Mount Sinai Health System, NY, during 2015-2019. Data included tabular clinical features and free-text triage notes represented using bag-of-words. A full gradient boosting model, trained on data available at different time points (30, 60, 90, 120, and 150 min), was compared to single models trained exclusively at data available at each time point. This was conducted by concatenating the rows of data available at each time point to one data matrix for the full model, where each row is considered a separate case. RESULTS: The cohort included 1,043,345 ED visits. The full model showed comparable results to the single models at all time points (AUCs 0.84-0.88 for different time points for both the full and single models). CONCLUSION: A full model trained on data concatenated from different time points showed similar results to single models trained at each time point. An ML-based prediction model can use used for identifying hospital admission.

SELECTION OF CITATIONS
SEARCH DETAIL