Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Opt Lett ; 48(17): 4609-4612, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656567

ABSTRACT

We report on high average power, low threshold supercontinuum generation in a homogeneous bulk material at 76 MHz pulse repetition rate with amplified as well as unamplified pulses from a Yb:KGW oscillator. An octave-spanning supercontinuum was produced in undoped potassium gadolinium tungstate (KGW), which demonstrated robust, damage-free long-term performance with a total average pump power of 6.4 W. The supercontinuum generation was unambiguously attested by the distinctive features of the phenomenon: beam filamentation visualized via filament-induced luminescence; conical emission and its characteristic angular distribution captured by angle-resolved spectral measurements; and pulse splitting that produced the sub-pulses with well-behaved phases, as retrieved from the measurements employing a second harmonic frequency-resolved optical gating technique.

2.
Opt Express ; 31(12): 20377-20386, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381433

ABSTRACT

We present an experimental investigation of supercontinuum generation in potassium gadolinium tungstate (KGW) and yttrium vanadate (YVO4) crystals pumped with 210 fs, 1030 nm pulses from an amplified Yb:KGW laser operating at 2 MHz repetition rate. We demonstrate that compared to commonly used sapphire and YAG, these materials possess considerably lower supercontinuum generation thresholds, produce remarkable red-shifted spectral broadenings (up to 1700 nm in YVO4 and up to 1900 nm in KGW) and exhibit less bulk heating due to energy deposition during filamentation process. Moreover, durable damage-free performance was observed without any translation of the sample, suggesting that KGW and YVO4 are excellent nonlinear materials for high repetition rate supercontinuum generation in the near and short-wave infrared spectral range.

3.
Opt Lett ; 48(2): 506-509, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36638496

ABSTRACT

High repetition rate femtosecond filaments in transparent solids produce conical third harmonic generation due to filament-induced material reorganization in the form of periodic volume nanogratings. Here we report on conical third harmonic generation that accompanies supercontinuum generation in fused silica using broadly tunable femtosecond pulses. The measurement of third harmonic cone angles with driving wavelengths in the 1-3-µm range fully supports the noncollinear phase-matching scenario that involves a reciprocal lattice vector of the filament-inscribed nanograting. The nanograting provides an octave-spanning phase-matching bandwidth, as attested by the measurements of the angle-resolved spectra of broadband conical third harmonic emission.

4.
Sci Rep ; 12(1): 20231, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36418435

ABSTRACT

The formation and evolution of laser-induced periodic surface structures in fused silica under irradiation of widely tunable (in the 1-3 [Formula: see text]m range) linearly polarized femtosecond (200 fs) pulses was studied experimentally. The structures were inscribed in high fluence regime (exceeding the surface ablation threshold for a single pulse) and characterized by using scanning electron microscopy and two dimensional Fourier transform. The results revealed rapid (after irradiation with a few successive pulses) formation of periodic laser-induced periodic surface structures aligned parallel to laser polarization, whose period increases with increasing the inscription wavelength, obeying the [Formula: see text] law. With further increase of number of pulses, the generated structures gradually reorganize into laser polarization-independent low spatial frequency annular structures associated with formation of the damage crater, which fully established after irradiation with a few tens of successive laser pulses. This particular evolution scenario was observed over the entire wavelength tuning range of incident pulses.

5.
Opt Express ; 29(24): 40633-40642, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809398

ABSTRACT

We report on observations of conical third harmonic emission that emerges during supercontinuum generation produced by self-focusing and filamentation of high (20-200 kHz) repetition rate 180 fs, 1035 nm pulses from an amplified Yb:KGW laser in various nonlinear crystals and glasses: YAG, sapphire, YLF, LiF, CaF2, MgF2, LiSAF, fused silica and BK-7 glass. We show that conical third harmonic generation is a phase-matched four-wave mixing process, where noncollinear phase matching is achieved by means of reciprocal lattice vector, inversely proportional to the period of nanograting, which is inscribed by femtosecond filament in the volume of nonlinear material. The existence of a particular period required to phase match conical third harmonic generation was indirectly verified by investigations of periodicity features of high and low spatial frequency laser-induced periodic surface structures, in which matter is reorganized in a similar fashion.

6.
Sci Rep ; 11(1): 15019, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294792

ABSTRACT

We compare supercontinuum generation in [Formula: see text] crystal under tight and loose focusing of 150 fs, 515 nm second harmonic pulses from an amplified Yb:KGW laser at a repetition rate of 10 kHz. It is demonstrated that supercontinuum generation geometry applying loose focusing ([Formula: see text]) of the pump beam into a long (25 mm) [Formula: see text] sample is advantageous in terms of supercontinuum spectral extent and durability of damage-free operation of the nonlinear material as compared to a commonly used supercontinuum generation setup which employs tight focusing ([Formula: see text]) into a short (5 mm) sample and to setup which uses tight focusing into a long (25 mm) sample. More specifically, loose focusing into a long sample showed remarkably longer (20 min) damage-free operation of the nonlinear material, which was not translated with respect of the pump beam, while in tight focusing condition the sample is damaged just within 2 min of operation, leading to a complete extinction of the supercontinuum spectrum. The evolution of optical degradation of the nonlinear material in time and its impact to supercontinuum spectrum is studied in terms of filament-induced luminescence due to self-trapped exciton emission and light scattering at the pump wavelength indicating the onset of optical damage. Our findings are supported by the numerical simulations which compare relevant parameters related to filament propagation in tight and loose focusing conditions.

7.
Opt Lett ; 45(16): 4507-4510, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32796995

ABSTRACT

We have experimentally investigated supercontinuum (SC) generation and the evolution of optical damage in sapphire and YAG crystals with 180 fs, 1035 nm pulses from an amplified Yb:KGW laser with variable repetition rates, both in tight and loose focusing conditions. In this Letter, we demonstrate that the extinction of the SC spectrum always correlates with an occurrence of conical third harmonic generation, which readily serves as an indication of the onset of in-bulk optical damage. Damage-related structural changes of the nonlinear material are also justified by an increased intensity and large red shift of crystal luminescence spectrum corresponding to the F center emission. The SC spectrum in sapphire starts shrinking on the time scale between seconds and minutes by varying the focusing condition from tight to loose at the laser repetition rate of 200 kHz, whereas the YAG crystal produces stable performance for several hours at least.

8.
Sci Rep ; 8(1): 11616, 2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30072813

ABSTRACT

Nonlinear optical processes are an essential tool in modern optics, with a broad spectrum of applications, including signal processing, frequency conversion, spectroscopy and quantum optics. Ordinary parametric devices nevertheless still suffer from relatively low gains and wide spectral emission. Here we demonstrate a unique configuration for phase-matching multiple nonlinear processes in a monolithic 2D nonlinear photonic crystal, resulting in the coherent parametric emission of four signal and idler modes, featuring an exponential gain enhancement equal to the Golden Ratio. The results indicate a new route towards compact high-brightness and coherent sources for multi-photon generation, manipulation and entanglement, overcoming limitations of conventional parametric devices.

9.
Opt Lett ; 43(2): 235-238, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29328248

ABSTRACT

We experimentally demonstrate virtually lossless, filamentation-free and energy-scalable more than three-fold self-compression of mid-infrared laser pulses at 2.1 µm in a birefringent medium (ß-BBO crystal), which stems from favorable interplay between the second-order cascading-enhanced self-phase modulation and anomalous group velocity dispersion. By choosing an appropriate input beam diameter and intensity, the self-compression down to sub-30 fs pulse widths with gigawatt peak power is achieved without the onset of beam filamentation and associated nonlinear losses due to the multiphoton absorption, yielding the energy throughput greater than 86%.

10.
Opt Express ; 25(6): 6746-6756, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28381018

ABSTRACT

We experimentally investigate filamentation and supercontinuum generation in a birefringent medium (BBO crystal), in the self-focusing regime where intrinsic cubic nonlinearity is either enhanced or reduced by the second-order cascading due to phase-mismatched second harmonic generation. We demonstrate that the supercontinuum spectral extent is efficiently controlled by varying the phase mismatch parameter. In the range of negative phase mismatch, we achieve full control of the blue-shifted spectral broadening, which is very robust and independent on the input pulse energy. In the range of positive phase mismatch, both the blue-shifted and the red-shifted spectral broadenings are controlled simultaneously, however showing a certain dependence on the input pulse energy. The results are interpreted in terms of complex interplay between the self-phase-matched second harmonic generation, which is a process inherent to narrow ultrashort pulsed laser beams and concurrent self-steepening processes which arise from cubic and cascaded-quadratic nonlinearities.

11.
Opt Express ; 19(11): 10351-8, 2011 May 23.
Article in English | MEDLINE | ID: mdl-21643292

ABSTRACT

We report on experimental and numerical investigation of two-photon coincidence properties of the parametric spontaneous down-converted field excited by a high brightness blue LED in bulk lithium iodate crystal. Ratio of up to 11.5% of coincidence, which cannot be attributed to classical coincidences, to single photon counts was recorded at the outputs of multimode fibers, demonstrating well-preserved biphoton property. This result, combined with practically useful power of the source, suggests its possible application for a class of quantum experiments.

12.
Opt Lett ; 33(1): 58-60, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-18157257

ABSTRACT

We present the application of time-resolved off-axis digital holography for the investigation of refractive index/transmission properties of laser-induced plasma filaments in water. Time evolution of both amplitude- and phase-contrast images of the self-focused beam in water was characterized with temporal resolution better than 50 fs. To the best of our knowledge, this is the first attempt to characterize the propagation of femtosecond laser pulse in nonlinear media using off-axis digital holography.

13.
Opt Lett ; 33(1): 86-8, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-18157267

ABSTRACT

By means of a quantitative shadowgraphic method, we performed a space-time characterization of the refractive index variation and transient absorption induced by a light-plasma filament generated by a 120 fs laser pulse in water. The formation and evolution of the plasma channel in the proximity of the nonlinear focus were observed with a 23 fs time resolution.


Subject(s)
Nephelometry and Turbidimetry/instrumentation , Photometry/instrumentation , Refractometry/instrumentation , Water/chemistry , Equipment Design , Equipment Failure Analysis , Hot Temperature , Light , Nephelometry and Turbidimetry/methods , Photometry/methods , Refractometry/methods
14.
Phys Rev Lett ; 92(25 Pt 1): 253903, 2004 Jun 25.
Article in English | MEDLINE | ID: mdl-15245007

ABSTRACT

The propagation of intense 200 fs pulses in water reveals light filaments not sustained by static balance between Kerr-induced self-focusing and plasma-induced defocusing. Numerical calculations outline the occurrence of a possible scenario where filaments appear because of spontaneous reshaping of the Gaussian input beam into a conical wave, driven by the requirement of maximum localization, maximum stationarity, and minimum nonlinear losses.

15.
Opt Lett ; 29(10): 1126-8, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15182007

ABSTRACT

We provide what is to our knowledge the first experimental evidence that multiple filamentation (MF) of ultra-short pulses can be induced by input beam ellipticity. Unlike noise-induced MF, which results in complete beam breakup, the MF pattern induced by small input beam ellipticity appears as a result of nucleation of annular rings surrounding the central filament. Moreover, our experiments show that input beam ellipticity can dominate the effect of noise (transverse modulational instability), giving rise to predictable and highly reproducible MF patterns. The results are explained with a theoretical model and simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...