Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(42): 96181-96190, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37566334

ABSTRACT

Cadmium (Cd) and polyethylene (PE) seriously contaminate the aquatic environment and threaten human health. Many studies have reported the toxic effects of Cd and PE on plants, whereas few have reported the combined contamination of these two pollutants. In this study, duckweed (Lemma minor) was used as an indicator to explore the effect of PE microplastics (PE-MPs) at concentrations of 10, 50, 100, 200, and 500 mg/L on tolerance to 1 mg/L Cd. The results showed that different concentrations of PE-MPs inhibited the growth rate and chlorophyll content of duckweed to different degrees, both of which were minimal at 50 mg/L PE-MPs, 0.11 g/d, and 0.32 mg/g, respectively. The highest Cd enrichment (7.77 mg/kg) and bioaccumulation factors (94.22) of duckweed were detected when Cd was co-exposed with 50 mg/L of PE-MPs. Catalase and peroxidase activity first decreased and then increased with increasing PE-MPs concentrations, showing "hormesis effects", with minimum values of 11.47 U/g and 196.00 U/g, respectively. With increasing concentrations of PE-MPs, the effect on superoxide dismutase activity increased and then declined, peaking at 162.05 U/g, and displaying an "inverted V" trend. The amount of malondialdehyde rose with different PE-MPs concentrations. This research lay a foundation for using duckweed to purify water contaminated with MPs and heavy metals.


Subject(s)
Araceae , Cadmium , Humans , Cadmium/toxicity , Microplastics , Antioxidants/pharmacology , Plastics/toxicity , Polyethylenes
2.
Sci Total Environ ; 902: 166056, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37558073

ABSTRACT

Duckweed is a cadmium (Cd) hyperaccumulator. However, its enrichment characteristics and physiological responses to Cd have not been systematically studied. The physiological responses, enrichment characteristics, diversity of endophytic bacterial communities, and isolation of Cd-resistant endophytes in duckweed (Lemna minor 0014) were studied for different durations and Cd concentrations. The results indicated that peroxidase (POD) and catalase (CAT) activities decreased while superoxide dismutase activity first increased and then decreased with increasing Cd stress duration. POD activities, CAT activities, and O2- increased as Cd concentrations increased. Malondialdehyde content and Cd accumulation in duckweed increased with increasing concentrations and time. This endophytic diversity study identified 488 operational taxonomic units, with the dominant groups being Proteobacteria, Firmicutes, and Actinobacteria. Paenibacillus sp. Y11, a strain tolerant to high concentrations of Cd and capable of significantly promoting duckweed growth, was isolated from the plant. Our study revealed the effects of heavy metals on aquatic plants, providing a theoretical basis for the application of duckweed in water pollution.


Subject(s)
Araceae , Metals, Heavy , Paenibacillus , Soil Pollutants , Cadmium/toxicity , Soil Pollutants/toxicity , Antioxidants/pharmacology
3.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569533

ABSTRACT

Cadmium (Cd) is one of the most toxic metals in the environment and exerts deleterious effects on plant growth and production. Duckweed has been reported as a promising candidate for Cd phytoremediation. In this study, the growth, Cd enrichment, and antioxidant enzyme activity of duckweed were investigated. We found that both high-Cd-tolerance duckweed (HCD) and low-Cd-tolerance duckweed (LCD) strains exposed to Cd were hyper-enriched with Cd. To further explore the underlying molecular mechanisms, a genome-wide transcriptome analysis was performed. The results showed that the growth rate, chlorophyll content, and antioxidant enzyme activities of duckweed were significantly affected by Cd stress and differed between the two strains. In the genome-wide transcriptome analysis, the RNA-seq library generated 544,347,670 clean reads, and 1608 and 2045 differentially expressed genes were identified between HCD and LCD, respectively. The antioxidant system was significantly expressed during ribosomal biosynthesis in HCD but not in LCD. Fatty acid metabolism and ethanol production were significantly increased in LCD. Alpha-linolenic acid metabolism likely plays an important role in Cd detoxification in duckweed. These findings contribute to the understanding of Cd tolerance mechanisms in hyperaccumulator plants and lay the foundation for future phytoremediation studies.


Subject(s)
Araceae , Transcriptome , Cadmium/toxicity , Cadmium/metabolism , Antioxidants/metabolism , Gene Expression Profiling , Araceae/genetics , Araceae/metabolism
4.
Ecotoxicol Environ Saf ; 243: 114011, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36007321

ABSTRACT

The combined contamination of heavy metals and microplastics is widespread in freshwater environments. However, there are few researches on their combined effects on aquatic plants. In this study, the effects of single and combined stress of 0.01 mg L-1 cadmium (Cd), 50 mg L-1 polyethylene and 50 mg L-1 polypropylene for 15 days on the physiological response, ultrastructure and rhizosphere microbial community of duckweed were investigated. The results showed that Cd and microplastics single or combined stress inhibited the growth of duckweed, shortened the root length and decreased the chlorophyll content. Compared with single Cd treatments, the combination of microplastics and Cd increased duckweed growth rate and increased superoxide dismutase activity and malondialdehyde content and reduced chloroplast structural damage, indicating that the combined stress could reduce the toxicity of heavy metals to duckweed. Through the study of rhizosphere microbial diversity, 1381 Operational Taxonomic Unit (OTUs) were identified and rich microbial communities were detected in the duckweed rhizosphere. Among them, the main microbial communities were Proteobacteria, Bacteroidetes, and Cyanobacteria. Compared with Cd single stress, the ACE and chao index of rhizosphere microbial community increased under combined stress, indicating that the diversity and abundance of microbial communities were improved after combined stress treatment. Our study revealed the effects of heavy metals and microplastics on aquatic plants, providing a theoretical basis for duckweed applications in complex water pollution.


Subject(s)
Araceae , Metals, Heavy , Microbiota , Soil Pollutants , Cadmium/analysis , Metals, Heavy/toxicity , Microplastics , Plastics , Rhizosphere , Soil Pollutants/analysis
5.
Biology (Basel) ; 10(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204395

ABSTRACT

The heavy metal cadmium (Cd), as one of the major environmentally toxic pollutants, has serious impacts on the growth, development, and physiological functions of plants and animals, leading to deterioration of environmental quality and threats to human health. Research on how plants absorb and transport Cd, as well as its enrichment and detoxification mechanisms, is of great significance to the development of phytoremediation technologies for ecological and environmental management. This article summarises the research progress on the enrichment of heavy metal cadmium in plants in recent years, including the uptake, transport, and accumulation of Cd in plants. The role of plant roots, compartmentalisation, chelation, antioxidation, stress, and osmotic adjustment in the process of plant Cd enrichment are discussed. Finally, problems are proposed to provide a more comprehensive theoretical basis for the further application of phytoremediation technology in the field of heavy metal pollution.

6.
J Hazard Mater ; 419: 126410, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34157466

ABSTRACT

Iron plaques have been found to limit the phytoremediation efficiency by reducing iron solubility, while chelating agents can increase the bioavailability of iron from Fe plaques to numerous terrestrial plants. However, the effects of chelating agents on Fe plaques along the As accumulation in aquatic plants remain unknown. In this study, the effects of five chelating agents (EDTA, DTPA, NTA, GLDA, and CA) on the As (As(III) or As(V)), phosphate, and iron uptake by iron plaques and duckweed (Lemna minor) were examined. The results showed that the chelating agents increased the As accumulation in L. minor plants by desorbing and mobilizing As from Fe plaques. The desorption rates of As(V) (As(III)) from the Fe plaques by the chelating agents were 5.26-8.77% (8.70-15.02%), and the plants/DCB extract ratios of As(V) (As(III)) increased from 2.63 ± 0.13 (1.97 ± 0.06) to the peak value of 3.38 ± 0.21 (2.70 ± 0.14) upon adding chelating agents. Besides, the addition of chelating agents increased the uptake of P and Fe by L. minor plants. This work provides a theoretical basis for the remediation of As-contaminated waters by duckweed with the help of chelating agents.


Subject(s)
Araceae , Arsenic , Arsenic/analysis , Biodegradation, Environmental , Chelating Agents , Iron
7.
Biomolecules ; 11(1)2021 01 13.
Article in English | MEDLINE | ID: mdl-33450858

ABSTRACT

Recently, plant bioreactors have flourished into an exciting area of synthetic biology because of their product safety, inexpensive production cost, and easy scale-up. Duckweed is the smallest and fastest-growing aquatic plant, and has advantages including simple processing and the ability to grow high biomass in smaller areas. Therefore, duckweed could be used as a new potential bioreactor for biological products such as vaccines, antibodies, pharmaceutical proteins, and industrial enzymes. Duckweed has made a breakthrough in biosynthesis as a chassis plant and is being utilized for the production of plenty of biological products or bio-derivatives with multiple uses and high values. This review summarizes the latest progress on genetic background, genetic transformation system, and bioreactor development of duckweed, and provides insights for further exploration and application of duckweed.


Subject(s)
Araceae/metabolism , Bioreactors , Research/trends , Araceae/genetics , Araceae/growth & development , Plant Proteins/metabolism , Transformation, Genetic
8.
Aquat Toxicol ; 231: 105710, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33338701

ABSTRACT

The co-contamination of naphthalene (NAP) and microcystin-LR (MC-LR) commonly occurs in eutrophic waters. However, the joint effects of NAP and MC-LR on plants in aquatic environments remain unknown. Landoltia punctata is characterized by high starch yields and high biomass in polluted waters and has been proven to be a bioenergy crop and phytoremediation plant. In this study, L. punctata was cultured in a nutrient medium with environmentally relevant NAP (0.1, 1, 3, 5, and 10 µg/L) and MC-LR (5, 10, 25, 50, and 100 µg/L) to determine individual and joint toxic effects. The effects of NAP and MC-LR on physiological responses of L. punctata, including growth, starch accumulation, and antioxidant responses, were studied. Bioaccumulation of MC-LR in L. punctata, with or without NAP, was also examined. The results showed that growth and chlorophyll-a contents of L. punctata were reduced at high concentrations of MC-LR (≥ 25 µg/L), NAP (≥ 10 µg/L) and their mixture (≥ 10 + 1 µg/L) after exposure for 7 d. Starch accumulation in L. punctata did not decrease when exposed to NAP and MC-LR, and higher starch content of 29.8 % ± 2.7 % DW could be due to the destruction of starch-degrading enzymes. The antioxidant responses of L. punctata were stronger after exposure to MC-LR + NAP than when exposed to a single pollutant, although not enough to avoid oxidative damage. NAP enhanced the bioaccumulation of MC-LR in L. punctata when NAP concentration was higher than 5 µg/L, suggesting that higher potentials of MC-LR phytoremediation with L. punctata may be observed in NAP and MC-LR co-concomitant waters. This study provides theoretical support for the application of duckweed in eutrophic waters containing organic chemical pollutants.


Subject(s)
Araceae/physiology , Marine Toxins/toxicity , Microcystins/toxicity , Naphthalenes/toxicity , Antioxidants/metabolism , Araceae/drug effects , Araceae/growth & development , Bioaccumulation/drug effects , Biodegradation, Environmental , Biomass , Models, Biological , Phenotype , Starch/metabolism , Toxicity Tests , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...