Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 568(7750): 98-102, 2019 04.
Article in English | MEDLINE | ID: mdl-30918408

ABSTRACT

Satiation is the process by which eating and drinking reduce appetite. For thirst, oropharyngeal cues have a critical role in driving satiation by reporting to the brain the volume of fluid that has been ingested1-12. By contrast, the mechanisms that relay the osmolarity of ingested fluids remain poorly understood. Here we show that the water and salt content of the gastrointestinal tract are precisely measured and then rapidly communicated to the brain to control drinking behaviour in mice. We demonstrate that this osmosensory signal is necessary and sufficient for satiation during normal drinking, involves the vagus nerve and is transmitted to key forebrain neurons that control thirst and vasopressin secretion. Using microendoscopic imaging, we show that individual neurons compute homeostatic need by integrating this gastrointestinal osmosensory information with oropharyngeal and blood-borne signals. These findings reveal how the fluid homeostasis system monitors the osmolarity of ingested fluids to dynamically control drinking behaviour.


Subject(s)
Brain/physiology , Drinking/physiology , Gastrointestinal Tract/physiology , Neurons/physiology , Satiation/physiology , Thirst/physiology , Animals , Brain/cytology , Female , GABAergic Neurons/metabolism , Gastrointestinal Tract/innervation , Glutamates/metabolism , Male , Mice , Oropharynx/innervation , Oropharynx/physiology , Osmolar Concentration , Prosencephalon/metabolism , Vagus Nerve/physiology , Vasopressins/metabolism
2.
Neuron ; 98(1): 31-48, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29621489

ABSTRACT

The regulation of body temperature is one of the most critical functions of the nervous system. Here we review our current understanding of thermoregulation in mammals. We outline the molecules and cells that measure body temperature in the periphery, the neural pathways that communicate this information to the brain, and the central circuits that coordinate the homeostatic response. We also discuss some of the key unresolved issues in this field, including the following: the role of temperature sensing in the brain, the molecular identity of the warm sensor, the central representation of the labeled line for cold, and the neural substrates of thermoregulatory behavior. We suggest that approaches for molecularly defined circuit analysis will provide new insight into these topics in the near future.


Subject(s)
Body Temperature Regulation/physiology , Body Temperature/physiology , Brain/physiology , Homeostasis/physiology , Thermosensing/physiology , Animals , Humans , Neural Pathways/physiology
3.
Neuron ; 96(6): 1272-1281.e4, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29268095

ABSTRACT

The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinforcing and that this negative-valence signal is transmitted along projections to the organum vasculosum of the lamina terminalis (OVLT) and median preoptic nucleus (MnPO). We then identify molecularly defined cell types within the OVLT and MnPO that are activated by fluid imbalance and show that stimulation of these neurons is sufficient to drive drinking, cardiovascular responses, and negative reinforcement. Finally, we demonstrate that the thirst signal exits these regions through at least three parallel pathways and show that these projections dissociate the cardiovascular and behavioral responses to fluid imbalance. These findings reveal a distributed thirst circuit that motivates drinking by the common mechanism of drive reduction.


Subject(s)
Drinking Behavior/physiology , Motivation , Prosencephalon/physiology , Reinforcement, Psychology , Thirst/physiology , Animals , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice, Transgenic , Neurons/physiology , Optogenetics , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Preoptic Area/physiology , Prosencephalon/cytology , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Subfornical Organ/physiology
4.
Nature ; 545(7655): 477-481, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28514446

ABSTRACT

In humans and other mammalian species, lesions in the preoptic area of the hypothalamus cause profound sleep impairment, indicating a crucial role of the preoptic area in sleep generation. However, the underlying circuit mechanism remains poorly understood. Electrophysiological recordings and c-Fos immunohistochemistry have shown the existence of sleep-active neurons in the preoptic area, especially in the ventrolateral preoptic area and median preoptic nucleus. Pharmacogenetic activation of c-Fos-labelled sleep-active neurons has been shown to induce sleep. However, the sleep-active neurons are spatially intermingled with wake-active neurons, making it difficult to target the sleep neurons specifically for circuit analysis. Here we identify a population of preoptic area sleep neurons on the basis of their projection target and discover their molecular markers. Using a lentivirus expressing channelrhodopsin-2 or a light-activated chloride channel for retrograde labelling, bidirectional optogenetic manipulation, and optrode recording, we show that the preoptic area GABAergic neurons projecting to the tuberomammillary nucleus are both sleep active and sleep promoting. Furthermore, translating ribosome affinity purification and single-cell RNA sequencing identify candidate markers for these neurons, and optogenetic and pharmacogenetic manipulations demonstrate that several peptide markers (cholecystokinin, corticotropin-releasing hormone, and tachykinin 1) label sleep-promoting neurons. Together, these findings provide easy genetic access to sleep-promoting preoptic area neurons and a valuable entry point for dissecting the sleep control circuit.


Subject(s)
Neuroanatomical Tract-Tracing Techniques , Neurons/physiology , Preoptic Area/cytology , Preoptic Area/physiology , Sleep/physiology , Transcriptome , Animals , Biomarkers/analysis , Channelrhodopsins , Chloride Channels/metabolism , Chloride Channels/radiation effects , Cholecystokinin/analysis , Cholecystokinin/genetics , Corticotropin-Releasing Hormone/analysis , Corticotropin-Releasing Hormone/genetics , Female , GABAergic Neurons/metabolism , GABAergic Neurons/radiation effects , Hypothalamic Area, Lateral/physiology , Male , Mice , Neurons/drug effects , Neurons/radiation effects , Optogenetics , Preoptic Area/drug effects , Preoptic Area/radiation effects , Proto-Oncogene Proteins c-fos/analysis , Proto-Oncogene Proteins c-fos/metabolism , Ribosomes/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Sleep/drug effects , Sleep/radiation effects , Tachykinins/analysis , Tachykinins/genetics , Wakefulness/physiology , Wakefulness/radiation effects
5.
Cell ; 167(1): 47-59.e15, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27616062

ABSTRACT

Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals. PAPERCLIP.


Subject(s)
Body Temperature Regulation/genetics , Brain-Derived Neurotrophic Factor/genetics , Gene Expression Regulation , Hot Temperature , Neurons/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Ventromedial Hypothalamic Nucleus/cytology , Animals , Behavior, Animal , Mice , Microdissection , Neurons/metabolism , Optogenetics , RNA, Messenger/genetics , Ribosomal Protein S6/metabolism , Sequence Analysis, RNA , Ventromedial Hypothalamic Nucleus/metabolism
6.
Science ; 342(6163): 1254-8, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24311694

ABSTRACT

The control of motor behavior in animals and humans requires constant adaptation of neuronal networks to signals of various types and strengths. We found that microRNA-128 (miR-128), which is expressed in adult neurons, regulates motor behavior by modulating neuronal signaling networks and excitability. miR-128 governs motor activity by suppressing the expression of various ion channels and signaling components of the extracellular signal-regulated kinase ERK2 network that regulate neuronal excitability. In mice, a reduction of miR-128 expression in postnatal neurons causes increased motor activity and fatal epilepsy. Overexpression of miR-128 attenuates neuronal responsiveness, suppresses motor activity, and alleviates motor abnormalities associated with Parkinson's-like disease and seizures in mice. These data suggest a therapeutic potential for miR-128 in the treatment of epilepsy and movement disorders.


Subject(s)
MicroRNAs/metabolism , Motor Activity , Neurons/physiology , Prosencephalon/physiology , Animals , Corpus Striatum/cytology , Dendrites/physiology , Epilepsy/metabolism , Hyperkinesis/metabolism , MAP Kinase Signaling System , Mice , MicroRNAs/genetics , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/physiopathology , Prosencephalon/cytology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Induced Silencing Complex/metabolism , Up-Regulation
7.
J Exp Med ; 204(7): 1553-8, 2007 Jul 09.
Article in English | MEDLINE | ID: mdl-17606634

ABSTRACT

Genome-encoded microRNAs (miRNAs) are potent regulators of gene expression. The significance of miRNAs in various biological processes has been suggested by studies showing an important role of these small RNAs in regulation of cell differentiation. However, the role of miRNAs in regulation of differentiated cell physiology is not well established. Mature neurons express a large number of distinct miRNAs, but the role of miRNAs in postmitotic neurons has not been examined. Here, we provide evidence for an essential role of miRNAs in survival of differentiated neurons. We show that conditional Purkinje cell-specific ablation of the key miRNA-generating enzyme Dicer leads to Purkinje cell death. Deficiency in Dicer is associated with progressive loss of miRNAs, followed by cerebellar degeneration and development of ataxia. The progressive neurodegeneration in the absence of Dicer raises the possibility of an involvement of miRNAs in neurodegenerative disorders.


Subject(s)
Cerebellum/pathology , MicroRNAs/genetics , Nerve Degeneration/pathology , Animals , Apoptosis , Cell Differentiation , Disease Models, Animal , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Purkinje Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL