Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Asian J ; 19(16): e202400070, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38581101

ABSTRACT

Hydrogen has been regarded as a promising alternative to traditional fossil fuels, presenting itself as a viable and environmentally friendly energy choice. The design and fabrication of highly efficient hydrogen storage materials is crucial to the wide utilization of hydrogen-based technologies. Magnesium-based nanocrystalline materials have received significant interest in the field of hydrogen storage due to their remarkable hydrogen storage capabilities and release efficiency. This review emphasizes on the most useful techniques including vapor deposition, sol-gel synthesis, electrochemical deposition, magnetron sputtering, and template-assisted approaches used for the fabrication of Magnesium-based nanocrystalline hydrogen storage materials (Mg-NHSMs), stressing their advantages, limitations, and recent advancements. These cutting-edge techniques demonstrate their significance in offering useful insights into the performance of Mg-NHSMs. Further, this review describes various applications of Mg-NHSMs. In addition, this review highlights the conclusion and future perspectives on the improvement of magnesium based nanocrystalline materials for efficient hydrogen storage.

2.
Chempluschem ; 88(8): e202300287, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37528443

ABSTRACT

A white oil-in-water novel emulsion stabilized by TiO2 nanoparticles with UVB shielding properties and proanthocyanidins with antioxidant activity was prepared, where the proanthocyanidins aggregated at the oil-water interface to reduce interfacial tension while TiO2 nanoparticles were dispersed in the continuous water phase to hinder droplet coalescence. It was found that the average oil droplet size was less than 10 µm and decreased with the increase of proanthocyanidins concentration, but the increase of the content of TiO2 nanoparticles had little effect on it. The combination of TiO2 nanoparticles and proanthocyanidins was versatile for oil phases with different polarities, and the resulting emulsion exhibited high stability in the face of centrifugation, heating and prolonging storage time. After encapsulating the UVA filter avobenzone in white oil, the emulsion was endowed with the ability to resist UVB and UVA. Further, the emulsion showed great free radical scavenging ability for superoxide anion radical (⋅O2 - ), hydroxyl radical (⋅OH) with the clearance rate of over 70 %, indicating the good antioxidant activity. The ingenious combination of UVB, UVA filter and antioxidant with emulsion as carrier provides a new idea for the preparation of full-band sunscreen emulsion.

3.
J Phys Chem A ; 115(22): 5517-24, 2011 Jun 09.
Article in English | MEDLINE | ID: mdl-21568261

ABSTRACT

The concept of variable activation energy in solid-state kinetics under nonisothermal conditions has been suffering from doubt and controversy. Rate equations of nonisothermal kinetics of solid decomposition, which involve the factors of thermodynamics conditions, pressure of gaseous product, structure parameters of solid, and/or extent of conversion, are derived from the models of the interface reaction, the diffusion of gaseous product, and the nuclei growth of the solid product, respectively. The definition of the validity function in the rate equations represents the influence of the factors on the reaction rate. A function of variable activation energy depending on the validity function is also developed. The changing trend and degree of activation energy are extrapolated from the function of variable activation energy and based on the data of nonisothermal thermal decomposition of calcium carbonate. It is shown that the concept of variable activation energy is meaningfully applicable to solid-state reactions under nonisothermal conditions.

SELECTION OF CITATIONS
SEARCH DETAIL