Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nat Nanotechnol ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374413

ABSTRACT

Liposomes as drug vehicles have advantages, such as payload protection, tunable carrying capacity and improved biodistribution. However, due to the dysfunction of targeting moieties and payload loss during preparation, immunoliposomes have yet to be favoured in commercial manufacturing. Here we report a chemical modification-free biophysical approach for producing immunoliposomes in one step through the self-assembly of a chimeric nanobody (cNB) into liposome bilayers. cNB consists of a nanobody against human epidermal growth factor receptor 2 (HER2), a flexible peptide linker and a hydrophobic single transmembrane domain. We determined that 64% of therapeutic compounds can be encapsulated into 100-nm liposomes, and up to 2,500 cNBs can be anchored on liposomal membranes without steric hindrance under facile conditions. Subsequently, we demonstrate that drug-loaded immunoliposomes increase cytotoxicity on HER2-overexpressing cancer cell lines by 10- to 20-fold, inhibit the growth of xenograft tumours by 3.4-fold and improve survival by more than twofold.

2.
Prev Chronic Dis ; 20: E95, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884317

ABSTRACT

INTRODUCTION: Understanding the transmission patterns and dynamics of COVID-19 is critical to effective monitoring, intervention, and control for future pandemics. The aim of this study was to investigate the spatial and temporal characteristics of COVID-19 transmission during the early stage of the outbreak in the US, with the goal of informing future responses to similar outbreaks. METHODS: We used dynamic mode decomposition (DMD) and national data on COVID-19 cases (April 6, 2020-October 9, 2020) to model the spread of COVID-19 in the US as a dynamic system. DMD can decompose the complex evolution of disease cases into linear combinations of simple spatial patterns or structures (modes) with time-dependent mode amplitudes (coefficients). The modes reveal the hidden dynamic behaviors of the data. We identified geographic patterns of COVID-19 spread and quantified time-dependent changes in COVID-19 cases during the study period. RESULTS: The magnitude analysis from the dominant mode in DMD showed that California, Louisiana, Kansas, Georgia, and Texas had higher numbers of COVID-19 cases than other areas during the study period. States such as Arizona, Florida, Georgia, Massachusetts, New York, and Texas showed simultaneous increases in the number of COVID-19 cases, consistent with data from the Centers for Disease Control and Prevention. CONCLUSION: Results from DMD analysis indicate that certain areas in the US shared similar trends and similar spatiotemporal transmission patterns of COVID-19. These results provide valuable insights into the spread of COVID-19 and can inform policy makers and public health authorities in designing and implementing mitigation interventions.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Georgia/epidemiology , Texas , Arizona , Massachusetts
3.
Biomicrofluidics ; 13(6): 064105, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31737154

ABSTRACT

Understanding cell transport and adhesion dynamics under flow is important for many biotransport problems. We investigated the influence of cell size, ligand coating density, micropost size, and intercellular collisions on circulating tumor cell adhesion and transport in microfluidic devices. The cells were modeled as coarse-grained cell membranes and the adhesion was modeled as pairwise interacting potentials, while the fluid was solved using the lattice Boltzmann method. The coupling between the cell and the fluid was achieved through the immersed boundary method. The cell showed transient rolling adhesion in high shear regions and firm adhesion in low shear regions. The adhesive force for rolling cells on a micropost was increasing before the cell reached the crest of the post and then decreasing afterward. The adhesive strength for cells increases with ligand coating density. Cell trajectories in a microfluidic device with a shifted post design were studied as well. At low concentrations, the majority of the cells follow streamlines closely. However, the intercellular collision and collision from red blood cells impacted the cell trajectories. An L 2 norm of | e | was defined to characterize the difference between the cell trajectories and the associated streamlines. It was shown that | e | L 2 increases with micropost sizes and cell concentrations.

4.
J Comput Sci ; 25: 89-100, 2018 Mar.
Article in English | MEDLINE | ID: mdl-30220942

ABSTRACT

The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the Jeffery orbits of an ellipsoid particle in shear flow, red blood cell stretching test, and effective blood viscosity flowing in tubes. It demonstrated essentially linear scaling from 512 to 8192 cores for both strong and weak scaling cases. The computing time for the coupling increased with the solid fraction. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code.

5.
Biomicrofluidics ; 12(4): 042206, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29861817

ABSTRACT

Isolating cells of interest from a heterogeneous population has been of critical importance in biological studies and clinical applications. In this study, a novel approach is proposed for utilizing an active ciliary system in microfluidic devices to separate particles based on their physical properties. In this approach, the bottom of the microchannel is covered with an equally spaced cilia array of various patterns which is actuated by an external stimuli. 3D simulations are carried out to study cilia-particle interaction and isolation dynamic in a microfluidic channel. It is observed that these elastic hair-like filaments can influence particle's trajectories differently depending on their biophysical properties. This modeling study utilizes immersed boundary method coupled with the lattice Boltzmann method. Soft particles and cilia are implemented through the spring connected network model and point-particle scheme, respectively. It is shown that cilia array with proper stimulation is able to continuously and non-destructively separate cells into subpopulations based on their size, shape, and stiffness. At the end, a design map for fabrication of a programmable microfluidic device capable of isolating various subpopulations of cells is developed. This biocompatible, label-free design can separate cells/soft microparticles with high throughput which can greatly complement existing separation technologies.

6.
Sci Rep ; 8(1): 6837, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717201

ABSTRACT

A facile method for generation of tumor spheroids in large quantity with controllable size and high uniformity is presented. HCT-116 cells are used as a model cell line. Individual tumor cells are sparsely seeded onto petri-dishes. After a few days of growth, separated cellular islets are formed and then detached by dispase while maintaining their sheet shape. These detached cell sheets are transferred to dispase-doped media under orbital shaking conditions. Assisted by the shear flow under shaking and inhibition of cell-to-extracellular matrix junctions by dispase, the cell sheets curl up and eventually tumor spheroids are formed. The average size of the spheroids can be controlled by tuning the cell sheet culturing period and spheroid shaking period. The uniformity can be controlled by a set of sieves which were home-made using stainless steel meshes. Since this method is based on simple petri-dish cell culturing and shaking, it is rather facile for forming tumor spheroids with no theoretical quantity limit. This method has been used to form HeLa, A431 and U87 MG tumor spheroids and application of the formed tumor spheroids in drug screening is also demonstrated. The viability, 3D structure, and necrosis of the spheroids are characterized.


Subject(s)
Cell Culture Techniques , Drug Screening Assays, Antitumor , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Antibiotics, Antineoplastic/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Doxorubicin/pharmacology , HCT116 Cells , Humans , Paclitaxel/pharmacology
7.
Proc Inst Mech Eng C J Mech Eng Sci ; 232(3): 502-514, 2018 Feb.
Article in English | MEDLINE | ID: mdl-31105387

ABSTRACT

The deformability of cells has been used as a biomarker to detect circulating tumor cells (CTCs) from patient blood sample using microfluidic devices with microscale pores. Successful separations of CTCs from a blood sample requires careful design of the micropore size and applied pressure. This paper presented a parametric study of cell squeezing through micropores with different size and pressure. Different membrane compressibility modulus was used to characterize the deformability of varying cancer cells. Nucleus effect was also considered. It shows that the cell translocation time though the micropore increases with cell membrane compressibility modulus and nucleus stiffness. Particularly, it increases exponentially as the micropore diameter or pressure decreases. The simulation results such as the cell squeezing shape and translocation time agree well with experimental observations. The simulation results suggest that special care should be taken in applying Laplace-Young equation (LYE) to microfluidic design due to the nonuniform stress distribution and membrane bending resistance.

8.
J Biomech ; 50: 240-247, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27863742

ABSTRACT

Quantitative understanding of nanoparticles delivery in a complex vascular networks is very challenging because it involves interplay of transport, hydrodynamic force, and multivalent interactions across different scales. Heterogeneous pulmonary network includes up to 16 generations of vessels in its arterial tree. Modeling the complete pulmonary vascular system in 3D is computationally unrealistic. To save computational cost, a model reconstructed from MRI scanned images is cut into an arbitrary pathway consisting of the upper 4-generations. The remaining generations are represented by an artificially rebuilt pathway. Physiological data such as branch information and connectivity matrix are used for geometry reconstruction. A lumped model is used to model the flow resistance of the branches that are cut off from the truncated pathway. Moreover, since the nanoparticle binding process is stochastic in nature, a binding probability function is used to simplify the carrier attachment and detachment processes. The stitched realistic and artificial geometries coupled with the lumped model at the unresolved outlets are used to resolve the flow field within the truncated arterial tree. Then, the biodistribution of 200nm, 700nm and 2µm particles at different vessel generations is studied. At the end, 0.2-0.5% nanocarrier deposition is predicted during one time passage of drug carriers through pulmonary vascular tree. Our truncated approach enabled us to efficiently model hemodynamics and accordingly particle distribution in a complex 3D vasculature providing a simple, yet efficient predictive tool to study drug delivery at organ level.


Subject(s)
Blood Vessels/physiology , Lung/blood supply , Models, Biological , Nanoparticles/administration & dosage , Biological Transport , Computer Simulation , Hemodynamics , Humans , Hydrodynamics , Nanoparticles/chemistry , Particle Size , Tissue Distribution
9.
J Nanosci Nanotechnol ; 16(6): 5447-56, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27427583

ABSTRACT

Recently, DNA-nanoparticle conjugates have been widely used as building blocks for assembling complex nanostructures, due to their programmable recognitions, high cellular uptake and enhanced binding capabilities. In this study, a nanoworm structure, which can be applied in fields of drug targeting, image probing and thermal therapies, has been assembled by DNA-nanoparticle conjugates. Subsequently, its mechanical properties have been investigated due to their importance on the structural stability, transport and circulations of the nanoworm. Stiffness and strengths of the nanoworm under different deformation types are studied by coarse-grained molecular dynamics simulations. Effects of temperature, DNA coating density and particle size on mechanical properties of nanoworms are also thoroughly investigated. Results show that both resistance and strength of the nanoworm are the weakest along the axial direction, indicating it is more prone to be ruptured by a stretching force. i addition, DNA strands are found to be more important than nanoparticles in determining mechanical properties of the nanoworm. Moreover, both strength and resistance in regardless of directions are proved to be enhanced by decreasing the temperature, raising the DNA coating density and enlarging the particle size. This study is capable of serving as guidance for designing nanoworms with optimal mechanical strengths for applications.


Subject(s)
DNA/chemistry , Mechanical Phenomena , Nanoparticles/chemistry , Drug Design , Molecular Dynamics Simulation , Nucleic Acid Conformation , Particle Size , Temperature
10.
Nanomaterials (Basel) ; 6(2)2016 Feb 05.
Article in English | MEDLINE | ID: mdl-28344287

ABSTRACT

Nanodrug-carrier delivery in the blood stream is strongly influenced by nanoparticle (NP) dispersion. This paper presents a numerical study on NP transport and dispersion in red blood cell (RBC) suspensions under shear and channel flow conditions, utilizing an immersed boundary fluid-structure interaction model with a lattice Boltzmann fluid solver, an elastic cell membrane model and a particle motion model driven by both hydrodynamic loading and Brownian dynamics. The model can capture the multiphase features of the blood flow. Simulations were performed to obtain an empirical formula to predict NP dispersion rate for a range of shear rates and cell concentrations. NP dispersion rate predictions from the formula were then compared to observations from previous experimental and numerical studies. The proposed formula is shown to accurately predict the NP dispersion rate. The simulation results also confirm previous findings that the NP dispersion rate is strongly influenced by local disturbances in the flow due to RBC motion and deformation. The proposed formula provides an efficient method for estimating the NP dispersion rate in modeling NP transport in large-scale vascular networks without explicit RBC and NP models.

11.
Biochem Biophys Res Commun ; 457(4): 681-7, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25617735

ABSTRACT

BACKGROUND: Chemotherapeutic resistance indicated the poor prognosis of colorectal cancer. OBJECTIVE: Our study aimed to investigate the role of STAT3/cyclinD1 pathway in the chemotherapeutic resistance of colorectal cancer. METHODS: We firstly measured the expression of cyclinD1 in the colorectal cancer tissues using immunohistochemistry in tissue microarray. Then cell viability and apoptosis were investigated in the HT-29 cell lines dealing with recombinant lentivirus and shRNA to increase or decrease cyclinD1 expression. Furthermore, luciferase and ChIP assays were applied to investigate whether STAT3 regulated cyclinD1 expression by binding to its promoter. Finally, we determined whether inhibition of STAT3 could decrease cyclinD1 and increase the chemotherapy sensitivity. RESULTS: CyclinD1 expression was significantly increased in the cancer cells and high level of cyclinD1 indicated the poor prognosis. Inhibition of cyclinD1 decreased the cell viability assessed by MTT and increased rate of apoptosis when exposed to 5-FU treatment while overexpression of cyclinD1 showed the reverse effect. ChIP assay showed that STAT3 directly bind to cyclinD1 promoter. Subclone of full promoter of cyclinD1 into pGL4 increased the luciferase activity while delete or mutation of any of STAT3 binding sites resulted in reductions of luciferase activity. Inhibition of STAT3 decreased cyclinD1 expression to decrease the cell viability and increase rate of apoptosis when exposed to 5-FU treatment. CONCLUSIONS: Inhibition of STAT3/cyclinD1 pathway increased the sensitivity of colorectal cancer cell to chemotherapy.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Colorectal Neoplasms/drug therapy , Cyclin D1/metabolism , Fluorouracil/pharmacology , STAT3 Transcription Factor/metabolism , Signal Transduction , Aged , Colon/drug effects , Colon/metabolism , Colon/pathology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cyclin D1/genetics , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic , HT29 Cells , Humans , Male , Prognosis , Promoter Regions, Genetic , RNA Interference , Rectum/drug effects , Rectum/metabolism , Rectum/pathology , STAT3 Transcription Factor/genetics , Up-Regulation
12.
Microvasc Res ; 94: 17-27, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24788074

ABSTRACT

This work focuses on the characterization of particle delivery in microcirculation through a microfluidic device. In microvasculature the vessel size is comparable to that of red blood cells (RBCs) and the existence of blood cells largely influences the dispersion and binding distribution of drug loaded particles. The geometry of the microvasculature leads to non-uniform particle distribution and affects the particle binding characteristics. We perform an in vitro study in a microfluidic chip with micro vessel mimicking channels having a rectangular cross section. Various factors that influence particle distribution and delivery such as the vessel geometry, shear rate, blood cells, particle size, particle antibody density are considered in this study. Around 10% higher particle binding density is observed at bifurcation regions of the mimetic microvasculature geometry compared to straight regions. Particle binding density is found to decrease with increased shear rates. RBCs enhance particle binding for both 210 nm and 2 µm particles for shear rates between 200-1600 s(-1) studied. The particle binding density increases about 2-3 times and 6-10 times when flowing in whole blood at 25% RBC concentration compared to the pure particle case, for 210 nm and 2 µm particles respectively. With RBCs, the binding enhancement is more significant for 2 µm particles than that for 210 nm particles, which indicates an enhanced size dependent exclusion of 2 µm particles from the channel centre to the cell free layer (CFL). Increased particle antibody coating density leads to higher particle binding density for both 210 nm and 2 µm particles.


Subject(s)
Drug Carriers , Microcirculation , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Microvessels/physiology , Polystyrenes/chemistry , Animals , Antibodies/chemistry , Dimethylpolysiloxanes/chemistry , Erythrocytes/cytology , Goats , Humans , Intercellular Adhesion Molecule-1/chemistry , Mice , Microfluidics , Microscopy, Confocal , Nanoparticles/chemistry , Particle Size , Shear Strength
13.
Comput Mech ; 53(3): 403-412, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24653546

ABSTRACT

A multi-physics model was developed to study the delivery of magnetic nanoparticles (MNPs) to the stent-implanted region under an external magnetic field. The model is firstly validated by experimental work in literature. Then, effects of external magnetic field strength, magnetic particle size, and flow velocity on MNPs' targeting and binding have been analyzed through a parametric study. Two new dimensionless numbers were introduced to characterize relative effects of Brownian motion (BM), magnetic force induced particle motion, and convective blood flow on MNPs motion. It was found that larger magnetic field strength, bigger MNP size, and slower flow velocity increase the capture efficiency of MNPs. The distribution of captured MNPs on the vessel along axial and azimuthal directions was also discussed. Results showed that the MNPs density decreased exponentially along axial direction after one-dose injection while it was uniform along azimuthal direction in the whole stented region (averaged over all sections). For the beginning section of the stented region, the density ratio distribution of captured MNPs along azimuthal direction is center-symmetrical, corresponding to the center-symmetrical distribution of magnetic force in that section. Two different generation mechanisms are revealed to form four main attraction regions. These results could serve as guidelines to design a better magnetic drug delivery system.

14.
Comput Struct ; 122: 128-134, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23729869

ABSTRACT

Prediction of nanoparticle (NP) distribution in a vasculature involves transport phenomena at various scales and is crucial for the evaluation of NP delivery efficiency. A combined particulate and continuum model is developed to model NP transport and delivery processes. In the particulate model ligand-receptor binding kinetics is coupled with Brownian dynamics to study NP binding on a microscale. An analytical formula is derived to link molecular level binding parameters to particulate level adhesion and detachment rates. The obtained NP adhesion rates are then coupled with a convection-diffusion-reaction model to study NP transport and delivery at macroscale. The binding results of the continuum model agree well with those from the particulate model. The effects of shear rate, particle size and vascular geometry on NP adhesion are investigated. Attachment rates predicted by the analytical formula also agree reasonably well with the experimental data reported in literature. The developed coupled model that links ligand-receptor binding dynamics to NP adhesion rate along with macroscale transport and delivery processes may serve as a faster evaluation and prediction tool to determine NP distribution in complex vascular networks.

15.
Microfluid Nanofluidics ; 14(1-2): 77-87, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23554583

ABSTRACT

Nanoparticles (NPs) are emerging as promising carrier platforms for targeted drug delivery and imaging probes. To evaluate the delivery efficiency, it is important to predict the distribution of NPs within blood vessels. NP size, shape and vessel geometry are believed to influence its biodistribution in circulation. Whereas, the effect of size on nanoparticle distribution has been extensively studied, little is known about the shape and vessel geometry effect. This paper describes a computational model for NP transport and distribution in a mimetic branched blood vessel using combined NP Brownian dynamics and continuum fluid mechanics approaches. The simulation results indicate that NPs with smaller size and rod shape have higher binding capabilities as a result of smaller drag force and larger contact area. The binding dynamics of rod-shaped NPs is found to be dependent on their initial contact points and orientations to the wall. Higher concentration of NPs is observed in the bifurcation area compared to the straight section of the branched vessel. Moreover, it is found that Péclet number plays an important role in determining the fraction of NPs deposited in the branched region and the straight section. Simulation results also indicate that NP binding decreases with increased shear rate. Dynamic NP re-distribution from low to high shear rates is observed due to the non-uniform shear stress distribution over the branched channel. This study would provide valuable information for NP distribution in a complex vascular network.

16.
Lab Chip ; 12(22): 4693-701, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-22983436

ABSTRACT

Early detection and isolation of circulating tumor cells (CTC) can enable better prognosis for cancer patients. A Hele-Shaw device with aptamer functionalized glass beads is designed, modeled, and fabricated to efficiently isolate cancer cells from a cellular mixture. The glass beads are functionalized with anti-epidermal growth factor receptor (EGFR) aptamer and sit in ordered array of pits in polydimethylsiloxane (PDMS) channel. A PDMS encapsulation is then used to cover the channel and to flow through cell solution. The beads capture cancer cells from flowing solution depicting high selectivity. The cell-bound glass beads are then re-suspended from the device surface followed by the release of 92% cells from glass beads using combination of soft shaking and anti-sense RNA. This approach ensures that the cells remain in native state and undisturbed during capture, isolation and elution for post-analysis. The use of highly selective anti-EGFR aptamer with the glass beads in an array and subsequent release of cells with antisense molecules provide multiple levels of binding and release opportunities that can help in defining new classes of CTC enumeration devices.


Subject(s)
Aptamers, Nucleotide/metabolism , Cell Separation/instrumentation , Glass/chemistry , Microspheres , Neoplastic Cells, Circulating/pathology , Aptamers, Nucleotide/genetics , Base Sequence , Blood Specimen Collection , Dimethylpolysiloxanes/chemistry , Equipment Design , ErbB Receptors/metabolism , Erythrocytes/cytology , Humans , Mechanical Phenomena , Molecular Sequence Data
17.
Ther Deliv ; 3(2): 181-94, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22834196

ABSTRACT

The design of nanoparticle (NP) size, shape and surface chemistry has a significant impact on their performance. While the influences of the particle size and surface chemistry on drug delivery have been studied extensively, little is known about the effect of particle shapes on nanomedicine. In this perspective article, we discuss recent progress on the design and fabrication of NPs of various shapes and their unique delivery properties. The shapes of these drug carriers play an important role in therapeutic delivery processes, such as particle adhesion, distribution and cell internalization. We envision that stimuli-responsive NPs, which actively change their shapes and other properties, might pave way to the next generation of nanomedicine.


Subject(s)
Drug Carriers , Nanoparticles , Nanotechnology , Technology, Pharmaceutical/methods , Animals , Chemistry, Pharmaceutical , Delayed-Action Preparations , Drug Administration Routes , Humans , Particle Size , Surface Properties
18.
Int J Pharm ; 423(2): 516-24, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22172292

ABSTRACT

This research aims to develop targeted nanoparticles as drug carriers to the injured arterial wall under fluid shear stress by mimicking the natural binding ability of platelets via interactions of glycoprotein Ib-alpha (GPIbα) of platelets with P-selectin of damaged endothelial cells (ECs) and/or with von Willebrand factor (vWF) of the subendothelium. Drug-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles were formulated using a standard emulsion method and conjugated with glycocalicin, the external fraction of platelet GPIbα, via carbodiimide chemistry. Surface-coated and cellular uptake studies in ECs showed that conjugation of PLGA nanoparticles, with GPIb, significantly increased nanoparticle adhesion to P-selectin- and vWF-coated surfaces as well as nanoparticle uptake by activated ECs under fluid shear stresses. In addition, effects of nanoparticle size and shear stress on adhesion efficiency were characterized through parallel flow chamber studies. The observed decrease in bound nanoparticle density with increased particle sizes and shear stresses is also explained through a computational model. Our results demonstrate that the GPIb-conjugated PLGA nanoparticles can be used as a targeted and controlled drug delivery system under flow conditions at the site of vascular injury.


Subject(s)
Dexamethasone/metabolism , Drug Carriers , Endothelial Cells/metabolism , Immunosuppressive Agents/metabolism , Lactic Acid/chemistry , Nanoparticles , Platelet Glycoprotein GPIb-IX Complex/metabolism , Polyglycolic Acid/chemistry , Adhesiveness , Animals , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Cells, Cultured , Chemistry, Pharmaceutical , Computer Simulation , Delayed-Action Preparations , Dexamethasone/chemistry , Disease Models, Animal , Drug Compounding , Endothelial Cells/pathology , Humans , Immunosuppressive Agents/chemistry , Kinetics , Male , Models, Biological , Nanotechnology , P-Selectin/metabolism , Particle Size , Platelet Adhesiveness , Platelet Glycoprotein GPIb-IX Complex/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Rats , Rats, Sprague-Dawley , Solubility , Stress, Mechanical , Technology, Pharmaceutical/methods , Vascular System Injuries/metabolism , Vascular System Injuries/pathology , von Willebrand Factor/metabolism
19.
J Phys Chem B ; 115(47): 13891-6, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22029250

ABSTRACT

The isolation and detection of rare circulating tumor cells (CTCs) has been one of the focuses of intense research recently. In a microfluidic device, a number of factors can influence the enrichment capability of surface-bound probe molecules. This article analyzes the important factor of flow velocity in a microfluidic channel. The competition of surface-grafted anti-EGFR aptamers to bind the overexpressed EGFR on cell membranes against the drag force from the fluid flow is an important efficiency determining factor. The flow rate variations are applied both in experiments and in simulation models to study their effects on CTC capture efficiency. A mixture of mononuclear cells and human Glioblastoma cells is used to isolate cancer cells from the cellular flow. The results show interdependence between the adhesion probability, isolation efficiency, and flow rate. This work can help in designing flow-through lab-on-chip devices that use surface-bound probe affinities against overexpressed biomarkers for cell isolation. This work demonstrates that microfluidic based approaches have strong potential applications in CTC detection and isolation.


Subject(s)
Aptamers, Nucleotide/chemistry , Microfluidic Analytical Techniques , Neoplastic Cells, Circulating , Aptamers, Nucleotide/metabolism , Cell Line, Tumor , Cell Separation , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans
20.
Soft Matter ; 8: 1934-1946, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-22375153

ABSTRACT

Multifunctional nanomedicine holds considerable promise as the next generation of medicine that allows for targeted therapy with minimal toxicity. Most current studies on Nanoparticle (NP) drug delivery consider a Newtonian fluid with suspending NPs. However, blood is a complex biological fluid composed of deformable cells, proteins, platelets, and plasma. For blood flow in capillaries, arterioles and venules, the particulate nature of the blood needs to be considered in the delivery process. The existence of the cell-free-layer and NP-cell interaction will largely influence both the dispersion and binding rates, thus impact targeted delivery efficacy. In this paper, a particle-cell hybrid model is developed to model NP transport, dispersion, and binding dynamics in blood suspension. The motion and deformation of red blood cells is captured through the Immersed Finite Element Method. The motion and adhesion of individual NPs are tracked through Brownian adhesion dynamics. A mapping algorithm and an interaction potential function are introduced to consider the cell-particle collision. NP dispersion and binding rates are derived from the developed model under various rheology conditions. The influence of red blood cells, vascular flow rate, and particle size on NP distribution and delivery efficacy is characterized. A non-uniform NP distribution profile with higher particle concentration near the vessel wall is observed. Such distribution leads to over 50% higher particle binding rate compared to the case without RBC considered. The tumbling motion of RBCs in the core region of the capillary is found to enhance NP dispersion, with dispersion rate increases as shear rate increases. Results from this study contribute to the fundamental understanding and knowledge on how the particulate nature of blood influences NP delivery, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...