Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Neurosurg Rev ; 47(1): 140, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578529

ABSTRACT

In recent years, nonsteroidal anti-inflammatory drug (NSAIDs), which are considered to affect the prognosis of spinal surgery, have been widely used in perioperative analgesia in spinal surgery, but the relationship between these two factors remains unclear. The purpose of this study was to explore the effect of perioperative use of NSAIDs on the prognosis of patients treated with spinal surgery. We systematically searched PubMed, Embase, and Cochrane Library for relevant articles published on or before July 14, 2023. We used a random-effect model for the meta-analysis to calculate the standardized mean difference (SMD) with a 95% confidence interval (CI). Sensitivity analyses were conducted to analyze stability. A total of 23 randomized clinical trials including 1457 participants met the inclusion criteria. Meta-analysis showed that NSAIDs were significantly associated with postoperative morphine use (mg) (SMD = -0.90, 95% CI -1.12 to -0.68) and postoperative pain (SMD = -0.71, 95% CI -0.85 to -0.58). These results were further confirmed by the trim-and-fill procedure and leave-one-out sensitivity analyses. The current study shows that perioperative use of NSAIDs appears to be an important factor in reducing postoperative pain and morphine use in patients undergoing spinal surgery. However, well-designed, high-quality randomized controlled trials (RCTs) are still required.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Pain, Postoperative , Spine , Humans , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Morphine Derivatives/therapeutic use , Pain, Postoperative/drug therapy , Randomized Controlled Trials as Topic , Spine/surgery
2.
Gut Microbes ; 15(1): 2238959, 2023.
Article in English | MEDLINE | ID: mdl-37505920

ABSTRACT

Gut microbiota-diet interaction has been identified as a key factor of metabolic associated fatty liver disease (MAFLD). Recent studies suggested that dietary polyphenols may protect against MAFLD by regulating gut microbiota; however, the underlying mechanisms remain elusive. We first investigated the effects of cyanidin 3-glucoside and its phenolic metabolites on high-fat diet induced MAFLD in C57BL/6J mice, and protocatechuic acid (PCA) showed a significant positive effect. Next, regulation of PCA on lipid metabolism and gut microbiota were explored by MAFLD mouse model and fecal microbiota transplantation (FMT) experiment. Dietary PCA reduced intraperitoneal and hepatic fat deposition with lower levels of transaminases (AST & ALT) and inflammatory cytokines (IL-1ß, IL-2, IL-6, TNF-α & MCP-1), but higher HDL-c/LDL-c ratio. Characterization of gut microbiota indicated that PCA decreased the Firmicutes/Bacteroidetes ratio mainly by reducing the relative abundance of genus Enterococcus, which was positively correlated with the levels of LDL-c, AST, ALT and most of the up-regulated hepatic lipids by lipidomics analysis. FMT experiments showed that Enterococcus faecalis caused hepatic inflammation, fat deposition and insulin resistance with decreased expression of carnitine palmitoyltransferase-1 alpha (CPT1α), which can be reversed by PCA through inhibiting Enterococcus faecalis. Transcriptomics analysis suggested that Enterococcus faecalis caused a significant decrease in the expression of fibroblast growth factor 1 (Fgf1), and PCA recovered the expression of Fgf1 with insulin-like growth factor binding protein 2 (Igfbp2), insulin receptor substrate 1 (Irs1) and insulin receptor substrate 2 (Irs2). These results demonstrated that high proportion of gut Enterococcus faecalis accelerates MAFLD with decreased expression of CPT1α and Fgf1, which can be prevented by dietary supplementation of PCA.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Mice , Animals , Cholesterol, LDL , Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 1/pharmacology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Liver/metabolism , Diet, High-Fat/adverse effects
3.
J Adv Res ; 53: 187-198, 2023 11.
Article in English | MEDLINE | ID: mdl-36539077

ABSTRACT

BACKGROUND: The accumulation of ectopic fats is related to metabolic syndromes with insulin resistance, which is considered as the first hit in obesity-related diseases. However, systematic understanding of the occurrence of ectopic fats is limited, since organisms are capable of orchestrating complicated intracellular signaling pathways to ensure that the correct nutritional components reach the tissues where they are needed. Interestingly, tissue-specific mechanisms lead to different consequences of fat metabolism with different insulin sensitivities. AIM OF REVIEW: To summarize the mechanisms of fat deposition in different tissues including adipose tissue, subcutis, liver, muscle and intestines, in an attempt to elucidate interactive mechanisms involving insulin actions and establish a potential reference for the rational uptake of fat. KEY SCIENTIFIC CONCEPTS OF REVIEW: Tissue-specific fat metabolism serves as a trigger for developing abnormal fat metabolism or as a compensatory agent for regulating normal fat metabolism. Outcomes of de novo lipogenesis and adipogenesis differ in the subcutaneous adipose tissue (SAT), liver and muscle, with the participation of insulin actions. Overload of lipid metabolic capability results in SAT fat expansion, and ectopic fat accumulation implicates impaired lipo-/adipogenesis in SAT. Regulating insulin actions may be a key measure on fat deposition and metabolism in individuals.


Subject(s)
Insulin Resistance , Insulins , Metabolic Syndrome , Humans , Lipid Metabolism , Adipose Tissue/metabolism , Obesity/complications , Obesity/metabolism , Metabolic Syndrome/complications , Metabolic Syndrome/metabolism , Insulin Resistance/physiology , Fats/metabolism , Insulins/metabolism
4.
Front Nutr ; 9: 1001031, 2022.
Article in English | MEDLINE | ID: mdl-36407549

ABSTRACT

Placental function is vital to the fetal growth of sows, and resveratrol (RES) can protect cells against oxidative stress, which is one of the major factors impairing placental function. This study aimed to investigate the effect of dietary resveratrol (RES) on placental function and reproductive performance during late pregnancy in a sow model from the aspects of oxidative stress, insulin resistance, and gut microbiota. A total of 26 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into two groups (n = 13) and fed with a basal diet or a diet containing 200 mg/kg of resveratrol from day 85 of gestation until parturition. The dietary supplementation of RES increased the litter weight at parturition by 12.53% (p = 0.145), with ameliorated insulin resistance (HOMA-IR), increased triglyceride (TG) levels, and decreased interleukin (IL)-1ß and IL-6 levels in serum (p < 0.05). Moreover, resveratrol increased the placental vascular density (p < 0.05) with the enhanced expression of nutrient transporter genes (SLC2A1 and SLC2A3) and antioxidant genes, such as superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) but declined the expression of inflammatory genes, such as IL-1ß and IL-6 (p < 0.05). The characterization of the fecal microbiota revealed that resveratrol decreased the relative abundance of the Christensensllaceae R-7 group and Ruminococcaceae UCG-008 (p < 0.05), which had a positive linear correlation with the expression of IL-1ß and IL-6 (p < 0.05), but had a negative linear correlation with the expression of SOD2, HO-1, SLC2A1, and SCL2A3 genes (p < 0.05). These data demonstrated that dietary supplementation with resveratrol can improve placental function with ameliorated insulin resistance, oxidative stress, and inflammation potentially by regulating Ruminococcaceae UCG-008 and the Christensensllaceae R-7 group in sows.

5.
Front Vet Sci ; 9: 945981, 2022.
Article in English | MEDLINE | ID: mdl-35968002

ABSTRACT

Eucommia ulmoides bark has been traditionally used as a Chinese medicine to attenuate stress, but the leaf, which is rich in polyphenols and polysaccharides, has been rarely used. This study aimed to investigate the effect of Eucommia ulmoides leaf extracts (EULEs) on oxidative stress and meat quality of broilers. A total of 252 broilers were randomly divided into 3 treatments and fed with a control basal diet (CON), or a diet containing 250 mg/kg or 1,000 mg/kg of EULE for 51 days. Results showed that dietary supplementation of 250 mg/kg EULE increased significantly the average daily gain of broilers in the early stage (1-21 days), while 250 mg/kg or 1,000 mg/kg of EULE decreased the feed conversion ratio in the whole period (P < 0.05). Supplementation of 250 mg/kg EULE reduced the level of MDA in the liver (P < 0.05), while 1,000 mg/kg EULE decreased the serum level of MDA (P < 0.05), and the HDL level in serum was increased by 250 mg/kg or 1,000 mg/kg EULE (P < 0.05). Additionally, 250 mg/kg EULE decreased abdominal fat ratio and serum triglyceride (TC) level in broilers, while 250 or 1,000 mg/kg of EULE reduced drip loss in breast muscle (P < 0.05), and 1,000 mg/kg EULE reduced the cooking loss in thigh muscle (P < 0.05). In conclusion, dietary supplementation of 250 mg/kg of EULE could attenuate oxidative stress and improve the growth performance and meat quality in broilers.

6.
Front Nutr ; 9: 918098, 2022.
Article in English | MEDLINE | ID: mdl-35719145

ABSTRACT

Objective: This study aimed to evaluate the effect of an antibiotic cocktail on gut microbiota and provide a reference for establishing an available mouse model for fecal microbiota transplantation (FMT) of specific microbes. Design: C57BL/6J mice (n = 24) had free access to an antibiotic cocktail containing vancomycin (0.5 g/L), ampicillin (1 g/L), neomycin (1 g/L), and metronidazole (1 g/L) in drinking water for 3 weeks. Fecal microbiota was characterized by 16S rDNA gene sequencing at the beginning, 1st week, and 3rd week, respectively. The mice were then treated with fecal microbiota from normal mice for 1 week to verify the efficiency of FMT. Results: The diversity of microbiota including chao1, observed species, phylogenetic diversity (PD) whole tree, and Shannon index were decreased significantly (P < 0.05) after being treated with the antibiotic cocktail for 1 or 3 weeks. The relative abundance of Bacteroidetes, Actinobacteria, and Verrucomicrobia was decreased by 99.94, 92.09, and 100%, respectively, while Firmicutes dominated the microbiota at the phylum level after 3 weeks of treatment. Meanwhile, Lactococcus, a genus belonging to the phylum of Firmicutes dominated the microbiota at the genus level with a relative abundance of 80.63%. Further FMT experiment indicated that the fecal microbiota from the receptor mice had a similar composition to the donor mice after 1 week. Conclusion: The antibiotic cocktail containing vancomycin, ampicillin, neomycin, and metronidazole eliminates microbes belonging to Bacteroidetes, Actinobacteria, and Verrucomicrobia, which can be recovered by FMT in mice.

7.
Anim Nutr ; 8(1): 144-152, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34977384

ABSTRACT

Ferulic acid (FA) and vanillic acid (VA) are considered as major phenolic metabolites of cyanidin 3-glucoside, a polyphenol that widely exists in plants that possess a protective effect against oxidative stress and inflammation in our previous study. This study aimed to investigate the effect of FA and VA on inflammation, gut barrier function, and growth performance in a weaned piglet model challenged with lipopolysaccharide (LPS). Thirty-six piglets (PIC 337 × C48, 28 d of age) were randomly allocated into 3 treatments with 6 replicate pens (2 piglets per pen). They were fed with a basal diet or a diet containing 4,000 mg/kg of FA or VA. Dietary supplementation of VA significantly increased average daily gain (ADG) (P < 0.05). Both FA and VA decreased serum levels of thiobarbituric acid reactive substances (TBARS), interlukin (IL)-1ß, IL-2, IL-6, and tumor necrosis factor (TNF)-α (P < 0.05), and enhanced the expression of tight junction protein oclaudin (P < 0.05). Analysis of gut microbiota indicated that both FA and VA increased the Firmicutes/Bacteroidetes ratio alongside reducing the relative abundance of the Prevotellaceae family including Prevotella 9 and Prevotella 2 genera, but enriched the Lachoiraceaea family including the Lachnospiraceae FCS020 group (P < 0.05). Moreover, VA reduced the relative abundance of Prevotella 7 and Prevotella 1 but enriched Lachnospira, Eubacterium eligens group, and Eubacterium xylanophilum group (P < 0.05), while FA showed a limited effect on these genera. The results demonstrated that both VA and FA could alleviate inflammation and oxidative stress, but only VA has a significant positive effect on the growth performance of LPS-challenged piglets potentially through modulating gut microbiota.

8.
J Anim Sci Biotechnol ; 11: 92, 2020.
Article in English | MEDLINE | ID: mdl-32944233

ABSTRACT

BACKGROUND: Weaning is one of the major factors that cause stress and intestinal disease in piglets. Protocatechuic acid (PCA) is an active plant phenolic acid which exists in Chinese herb, Duzhong (Eucommia ulmoides Oliver), and is also considered as the main bioactive metabolite of polyphenol against oxidative stress and inflammation. This study aimed to investigate the effect of PCA on growth performance, intestinal barrier function, and gut microbiota in a weaned piglet model challenged with lipopolysaccharide (LPS). METHODS: Thirty-six piglets (Pig Improvement Company line 337 × C48, 28 d of age, 8.87 kg ± 0.11 kg BW) were randomly allocated into 3 treatments and fed with a basal diet (CTL), a diet added 50 mg/kg of aureomycin (AUR), or a diet supplemented with 4000 mg/kg of PCA, respectively. The piglets were challenged with LPS (10 µg/kg BW) on d 14 and d 21 by intraperitoneal injection during the 21-d experiment. Animals (n = 6 from each group) were sacrificed after being anesthetized by sodium pentobarbital at 2 h after the last injection of LPS. The serum was collected for antioxidant indices and inflammatory cytokines analysis, the ileum was harvested for detecting mRNA and protein levels of tight junction proteins by PCR and immunohistochemical staining, and the cecum chyme was collected for intestinal flora analysis using 16S rRNA gene sequencing. RESULTS: Dietary supplementation of PCA or AUR significantly increased the expression of tight junction proteins including ZO-1 and claudin-1 in intestinal mucosa, and decreased the serum levels of thiobarbituric acid reactive substances (TBARS) and IL-6, as compared with CTL group. In addition, PCA also decreased the serum levels of IL-2 and TNF-α (P < 0.05). Analysis of gut microbiota indicated that PCA increased the Firmicutes/Bacteroidetes ratio (P < 0.05). Spearman's correlation analysis at the genus level revealed that PCA reduced the relative abundance of Prevotella 9, Prevotella 2, Holdemanella, and Ruminococcus torques group (P < 0.05), and increased the relative abundance of Roseburia and Desulfovibrio (P < 0.05), whereas AUR had no significant effect on these bacteria. CONCLUSIONS: These results demonstrated that both PCA and AUR had protective effect on oxidative stress, inflammation and intestinal barrier function in piglets challenged with LPS, and PCA potentially exerted the protective function by modulating intestinal flora in a way different from AUR.

9.
Antioxidants (Basel) ; 8(10)2019 Oct 12.
Article in English | MEDLINE | ID: mdl-31614770

ABSTRACT

Cyanidin-3-glucoside (C3G) is a well-known natural anthocyanin and possesses antioxidant and anti-inflammatory properties. The catabolism of C3G in the gastrointestinal tract could produce bioactive phenolic metabolites, such as protocatechuic acid, phloroglucinaldehyde, vanillic acid, and ferulic acid, which enhance C3G bioavailability and contribute to both mucosal barrier and microbiota. To get an overview of the function and mechanisms of C3G and its phenolic metabolites, we review the accumulated data of the absorption and catabolism of C3G in the gastrointestine, and attempt to give crosstalk between the phenolic metabolites, gut microbiota, and mucosal innate immune signaling pathways.

10.
Anim Nutr ; 4(3): 288-293, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30175257

ABSTRACT

Blue honeysuckle is rich in polyphenols, and recently receiving attention because of its potential antioxidant and anti-inflammatory properties. Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease that develops hepatic inflammation and metabolic syndrome. The present study aims to study the effect of blue honeysuckle extract (BHE) on fat deposition and hepatic lipid peroxidation in a high-fat-diet (HFD)-induced mouse model. Mice were fed a normal diet (ND) or a HFD containing 0.5% or 1% of BHE or not for 45 d. Liver sections were stained by hematoxylin-eosin staining. Serum lipids were measured by a clinical analyzer. Insulin was examined by ELISA, and hepatic proteins were detected by Western blotting. Dietary supplementation of BHE dose-dependently suppressed HFD-induced obesity and hepatic fat deposition. Moreover, BHE improved glucose metabolism by increasing insulin sensitivity and attenuated oxidative stress potentially by up-regulating nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...