Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6694, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335097

ABSTRACT

Asian populations are under-represented in human genomics research. Here, we characterize clinically significant genetic variation in 9051 genomes representing East Asian, South Asian, and severely under-represented Austronesian-speaking Southeast Asian ancestries. We observe disparate genetic risk burden attributable to ancestry-specific recurrent variants and identify individuals with variants specific to ancestries discordant to their self-reported ethnicity, mostly due to cryptic admixture. About 27% of severe recessive disorder genes with appreciable carrier frequencies in Asians are missed by carrier screening panels, and we estimate 0.5% Asian couples at-risk of having an affected child. Prevalence of medically-actionable variant carriers is 3.4% and a further 1.6% harbour variants with potential for pathogenic classification upon additional clinical/experimental evidence. We profile 23 pharmacogenes with high-confidence gene-drug associations and find 22.4% of Asians at-risk of Centers for Disease Control and Prevention Tier 1 genetic conditions concurrently harbour pharmacogenetic variants with actionable phenotypes, highlighting the benefits of pre-emptive pharmacogenomics. Our findings illuminate the diversity in genetic disease epidemiology and opportunities for precision medicine for a large, diverse Asian population.


Subject(s)
Asian People , Genome, Human , Child , Humans , Asian People/genetics , Genome, Human/genetics , Ethnicity , Pharmacogenetics , Phenotype
2.
Comput Struct Biotechnol J ; 19: 343-354, 2021.
Article in English | MEDLINE | ID: mdl-33489004

ABSTRACT

Single cell genomics offers an unprecedented resolution to interrogate genetic heterogeneity in a patient's tumour at the intercellular level. However, the DNA yield per cell is insufficient for today's sequencing library preparation protocols. This necessitates DNA amplification which is a key source of experimental noise. We provide an evaluation of two protocols using micro-fluidics based amplification for whole exome sequencing, which is an experimental scenario commonly used in single cell genomics. The results highlight their respective biases and relative strengths in identification of single nucleotide variations. Towards this end, we introduce a workflow SoVaTSiC, which allows for quality evaluation and somatic variant identification of single cell data. As proof of concept, the framework was applied to study a lung adenocarcinoma tumour. The analysis provides insights into tumour phylogeny by identifying key mutational events in lung adenocarcinoma evolution. The consequence of this inference is supported by the histology of the tumour and demonstrates usefulness of the approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...