Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
aBIOTECH ; 5(2): 184-188, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974870

ABSTRACT

Genome editing, particularly using the CRISPR/Cas system, has revolutionized biological research and crop improvement. Despite the widespread use of CRISPR/Cas9, it faces limitations such as PAM sequence requirements and challenges in delivering its large protein into plant cells. The hypercompact Cas12f, derived from Acidibacillus sulfuroxidans (AsCas12f), stands out due to its small size of only 422 amino acids and its preference for a T-rich motif, presenting advantageous features over SpCas9. However, its editing efficiency is extremely low in plants. Recent studies have generated two AsCas12f variants, AsCas12f-YHAM and AsCas12f-HKRA, demonstrating higher editing efficiencies in mammalian cells, yet their performance in plants remains unexplored. In this study, through a systematic investigation of genome cleavage activity in rice, we unveiled a substantial enhancement in editing efficiency for both AsCas12f variants, particularly for AsCas12f-HKRA, which achieved an editing efficiency of up to 53%. Furthermore, our analysis revealed that AsCas12f predominantly induces deletion in the target DNA, displaying a unique deletion pattern primarily concentrated at positions 12, 13, 23, and 24, resulting in deletion size mainly of 10 and 11 bp, suggesting significant potential for targeted DNA deletion using AsCas12f. These findings expand the toolbox for efficient genome editing in plants, offering promising prospects for precise genetic modifications in agriculture. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00168-2.

2.
Nat Commun ; 15(1): 5510, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951487

ABSTRACT

Co-immobilization of cells and enzymes is often essential for the cascade biocatalytic processes of industrial-scale feasibility but remains a vast challenge. Herein, we create a facile co-immobilization platform integrating enzymes and cells in covalent organic frameworks (COFs) to realize the highly efficient cascade of inulinase and E. coli for bioconversion of natural products. Enzymes can be uniformly immobilized in the COF armor, which coats on the cell surface to produce cascade biocatalysts with high efficiency, stability and recyclability. Furthermore, this one-pot in situ synthesis process facilitates a gram-scale fabrication of enzyme-cell biocatalysts, which can generate a continuous-flow device conversing inulin to D-allulose, achieving space-time yield of 161.28 g L-1 d-1 and high stability (remaining >90% initial catalytic efficiency after 7 days of continuous reaction). The created platform is applied for various cells (e.g., E. coli, Yeast) and enzymes, demonstrating excellent universality. This study paves a pathway to break the bottleneck of extra- and intracellular catalysis, creates a high-performance and customizable platform for enzyme-cell cascade biomanufacturing, and expands the scope of biocatalysis process intensification.


Subject(s)
Biocatalysis , Cells, Immobilized , Enzymes, Immobilized , Escherichia coli , Glycoside Hydrolases , Escherichia coli/metabolism , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Cells, Immobilized/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/metabolism , Saccharomyces cerevisiae/metabolism
3.
J Asian Nat Prod Res ; : 1-7, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920362

ABSTRACT

Twelve compounds, comprising of four new ones, 6ß,7α-limondiol (1) and ethyl 19-hydroxyisoobacunoate diosphenol (2), N-benzoyl 3-prenyltyramine (9) and 9-O-methyl integrifoliodiol (12), were isolated from the twigs with leaves of Tetradium trichotomum. The structures were elucidated by analysis of MS, NMR, and single-crystal X-ray diffraction. Compounds 1, 6, 8, 9 and 12 exhibited immunosuppressive activities in vitro against the proliferation of ConA-induced T lymphocytes and LPS-induced B cells.

4.
Article in English | MEDLINE | ID: mdl-38779800

ABSTRACT

Background: Leech bites have long been a persistent problem for individuals engaged in outdoor activities, particularly in environments such as moors, jungles, and grasslands. Methods to prevent leech bites are anecdotal and individual, highlighting the need for the development of universal and effective repellent formulations. This study developed a novel approach for repelling leeches using combined repellent agents and a film-forming material (polyvinyl butyral), to enhance efficiency in multi-scenario applications. Material and methods: This study demonstrates that citronellal, icaridin and DDAC (didecyl dimethyl ammonium chloride) showcasing active avoidance and contact toxicity on leeches. the optimized repellent formulation (MSRS, containing citronellal, icaridin and DDAC as repellent agents) enables specific sustained release properties of constituents in both air and water conditions. Results: MSRS could effectively achieve the purposes of "proactive repelling", "contact repelling", and "bite detaching". The effectiveness could last for several hours. Additionally, the hydrophobic polyvinyl butyral membrane reduced the transdermal absorption of repellent agents. Moreover, the formulation is biocompatible and environmentally friendly. Conclusions: This study provides a new feasible strategy for the prevention and removal of leech bites.

5.
Nat Sci Sleep ; 16: 473-487, 2024.
Article in English | MEDLINE | ID: mdl-38737460

ABSTRACT

Background: Sleep apnea syndrome(SAS) and osteoarthritis (OA) are two prevalent diseases that often coexist, but the causal relationship between them remains unclear. In light of this, our team utilizes Mendelian Randomization and bioinformatics analysis methods to investigate the potential association between the two diseases. Methods: In this study, we utilized GWAS data pertaining to SAS and OA to assess the causal relationship between the two diseases through Mendelian randomization (MR) analysis. We then employed transcriptomic data to perform differential gene identification, WGCNA, shared gene determination, functional enrichment analysis, and colocalization analysis, all designed to further elucidate the mechanisms underlying the association between the two diseases. In the end, we utilized Mendelian randomization (MR) analysis again to delve deeper into the relationship between the two diseases and immune cells. Results: Our research findings indicate that SAS is a risk factor for OA (p = 0.000004), knee OA (p = 0.0000001) and hip OA(p = 0.001). Furthermore, OA (p = 0.000195), knee OA (p = 0.001) are significant risk factors for SAS. However, there is no clear evidence that hip OA (p = 0.892) is a risk factor for SAS. Interestingly, the genes shared between OA and SAS are significantly enriched in leukocyte migration, leukocyte chemotaxis. Moreover, colocalization analysis suggests that the genes JUNB, COL8A1, FOSB, and IER2 may be key genes associated with both diseases. Furthermore, 57 immune cell phenotypes are associated with SAS, 95 with OA, and 6 shared between both diseases. Conclusion: This research confirmed the bidirectional causal relationship between SAS and OA. Notably, the 4 genes (JUNB, COL8A1, FOSB, IER2) and 6 immune phenotypes are crucial for both diseases, these provide hopeful targets for future interventions against these two diseases.

6.
Sci Total Environ ; 928: 172361, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38614339

ABSTRACT

The development of advanced biosensors for tracking chemical residues and detecting environmental pollution is of great significance. Insect chemical sensory proteins, including chemosensory proteins (CSPs), are easy to synthesize and purify and have been used to design proteins for specific biosensor applications. Chlorpyrifos is one of the most commonly used chemicals for controlling insect pests in agriculture. This organophosphate is harmful to aquatic species and has long-term negative consequences for the ecosystem. CSPs can bind and carry a variety of environmental chemicals, including insecticides. However, the mechanism by which CSPs bind to insecticides in aphids has not been clarified. In this study, we discovered that RpCSP1 from Rhopalosiphum padi has a higher affinity for chlorpyrifos, with a Ki value of 4.763 ± 0.491 µM. Multispectral analysis revealed the physicochemical binding mechanism between RpCSP1 and chlorpyrifos. Computational simulation analysis demonstrated that the main factor promoting the development of the RpCSP1-chlorpyrifos complex is polar solvation energy. Four residues (Arg33, Glu94, Gln145, Lys153) were essential in facilitating the interaction between RpCSP1 and chlorpyrifos. Our research has improved knowledge of the relationship between CSPs and organophosphorus pesticides. This knowledge contributes to the advancement of biosensor chips for tracking chemical residues and detecting environmental pollution through the use of CSPs.


Subject(s)
Chlorpyrifos , Insect Proteins , Insecticides , Chlorpyrifos/metabolism , Chlorpyrifos/analysis , Animals , Insecticides/metabolism , Insect Proteins/metabolism , Aphids , Environmental Monitoring/methods , Receptors, Odorant/metabolism , Biosensing Techniques , Pesticide Residues/analysis
7.
Opt Express ; 32(4): 6232-6240, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439331

ABSTRACT

We propose what we believe is a novel format conversion scheme using a few-mode fiber Bragg grating (FM-FBG) that can perform multichannel format conversion from carrier-suppressed return-to-zero (CSRZ) to non-return-to-zero (NRZ) for both LP01 and LP11. The multichannel spectral response of FM-FBG is designed according to the algebraic difference between the CSRZ and NRZ spectra outlines. Additionally, the FM-FBG response spectra of LP11 are designed to shift with that of LP01 by the WDM-MDM channel spacing for filtering both modes together. Numerical results demonstrate the successful conversion of both LP01 and LP11 channels, carrying four channels of 200-GHz-spaced CSRZ signals at 40 Gbit/s, into NRZ signals with a high Q-factor (exceeding 14 dB), and the converted NRZ signals exhibit clean and open eye diagrams. Furthermore, the performance analysis also shown that our proposed FM-FBG is robust to central wavelength detuning.

8.
World J Microbiol Biotechnol ; 40(2): 78, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38253730

ABSTRACT

Efforts to curtail the escalating health threat posed by methicillin-resistant Staphylococcus aureus (MRSA), a formidable superbug, necessitate the development of innovative treatment strategies. Leveraging potential compounds from natural sources in tandem with antibiotics has emerged as a promising approach against MRSA. These strategies should enhance the antibiotic efficacy, reduce dosage and toxicity, and bypass MRSA resistance. In this study, we used a checkerboard assay to illustrate the significant synergistic anti-MRSA effect of shikimic acid (SA), a naturally occurring compound, and ceftiofur (CF). Time-kill curves further revealed that a combination of 1/4 of the minimum inhibitory concentration (MIC) of SA and 1/8 MIC of the sodium CF eradicated MRSA within 2 h, with no noticeable toxicity observed with these concentrations. In vivo experiments confirmed that this combination therapy demonstrated robust antimicrobial activity against MRSA-induced bacteremia in mice, significantly reducing bacterial loads in the kidneys, liver, and spleen, attenuating inflammatory cell infiltration, and alleviating pathological damage. This study not only offers a compelling strategy, capitalizing on the synergistic potential of SA and CF, to rapidly address antibiotic resistance but also contributes significantly to the refinement of antimicrobial therapeutic strategies.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Animals , Mice , Shikimic Acid/pharmacology , Cephalosporins/pharmacology , Anti-Bacterial Agents/pharmacology
9.
Soa Chongsonyon Chongsin Uihak ; 35(1): 90-97, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38204736

ABSTRACT

Objectives: This study aimed to explore the influence of depression severity, disease course, treatment status, and other factors on cognitive function in adolescents with depressive disorders. Methods: Participants who met the inclusion criteria were enrolled in the study. Sociodemographic data of each participant were recorded, including age, sex, and family history of mental disorders. Zung's Self-Rating Depression Scale was used to assess depression status in adolescents. Moreover, P300 and mismatch negativity (MMN) were used to objectively evaluate the participants' cognitive function. Results: Only 26.8% of the adolescents with depression received standard antidepressant treatment. The latencies of N2 (267.80±23.34 ms), P3 (357.71±32.09 ms), and MMN (212.10±15.61 ms) in the adolescent depression group were longer than those in the healthy control group (p<0.01). Further analysis revealed that the latency of MMN was extended with increased levels of depression in adolescents. The MMN latency was short in participants with depression receiving standardized treatment. Furthermore, the latency of MMN was positively correlated with the severity and duration of depression (correlation coefficients were 0.465 and 0.479, respectively) (p<0.01). Conclusion: Receiving standardized treatment and shortening the course of depression can reduce cognitive impairment in adolescents with depression.

10.
Fitoterapia ; 172: 105759, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013059

ABSTRACT

A pair of new enantiomeric indolopyridoquinazoline-type alkaloids, (+)-1,7S,8R- and (-)-1,7R,8S-trihydroxyrutaecarpine (3a and 3b), and a new limonoid-tyrosamine hybrid, austrosinin (8), along with six known alkaloids and limonoids, were isolated from the stems with leaves of Tetradium austrosinense. Their structures were elucidated on the basis of analysis of MS, NMR, ECD and time-dependent density functional theory-based electronic circular dichroism (TDDFT-ECD) calculations, as well as proposed biosynthetic pathway. An anti-inflammatory bioassay in vitro showed 8 had significant immunosuppressive effect against the production of pro-inflammatory cytokine TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.


Subject(s)
Alkaloids , Limonins , Rutaceae , Limonins/pharmacology , Limonins/chemistry , Molecular Structure , Alkaloids/pharmacology , Alkaloids/chemistry , Rutaceae/chemistry , Circular Dichroism
11.
J Agric Food Chem ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922215

ABSTRACT

Lambda-cyhalothrin is one of the most important pyrethroids used for controlling wheat aphids. Extensive spraying of lambda-cyhalothrin has led to the development of high resistance to this pyrethroid inRhopalosiphum padi. The mechanisms of resistance are complex and not fully understood. In this study, we found that a laboratory-selected strain of R. padi showed extremely high resistance to lambda-cyhalothrin and cross-resistance to bifenthrin and deltamethrin. The expression level of RpCSP7 was significantly elevated in the resistant strain compared to that in the susceptible strain. Knockdown of RpCSP7 increased the susceptibility of R. padi to lambda-cyhalothrin, whereas the susceptibility to bifenthrin and deltamethrin was not significantly changed. The recombinant RpCSP7 displayed a high affinity for lambda-cyhalothrin but no affinities to bifenthrin and deltamethrin. These findings suggest that the overexpression of RpCSP7 contributes to the resistance of R. padi to lambda-cyhalothrin. This study provides valuable insights into CSP-mediated insecticide resistance in insects.

12.
ACS Appl Mater Interfaces ; 15(48): 55813-55821, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38014814

ABSTRACT

Defect passivation of the perovskite surface and grain boundary (GBs) has become a widely adopted approach to reduce charge recombination. Research has demonstrated that functional groups with Lewis acid or base properties can successfully neutralize trap states and limit nonradiative recombination. Unlike traditional Lewis acid-base organic molecules that only bind to a single anionic or cationic defect, zwitterions can passivate both anionic and cationic defects simultaneously. In this work, zwitterions organic halide salt 1-amino pyridine iodine (AmPyI) is used as a perovskite for defect passivation. It is found that a pair of amino lone electrons in AmPyI can passivate defects surface and GBs through hydrogen bonding with perovskite, and the introduced I- can bind to uncoordinated Pb2+ while also controlling the surface morphology of the film and improving the crystallinity. In the presence of the AmPyI additive, we obtained about 1.24 µm of amplified perovskite grains and achieved an efficiency of 23.80% with minimal hysteresis.

13.
Vasa ; 52(6): 355-365, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37779391

ABSTRACT

Insufficiency of the small saphenous vein causes 15% of varicose veins in the lower extremities. Endovenous ablation for the treatment of small saphenous vein varices has become a trend, and an increasing number of studies have reported the effects of different types of endovenous ablation in patients with small saphenous varicose veins. The purpose of this systematic review is to summarize the results of existing studies on endovenous ablation for the treatment of small saphenous varicose veins, compare its role and efficacy, and provide insights into the future development of endovenous ablation for treating small saphenous varicose veins. A systematic review of literature published from January 1, 2002 to January 1, 2022 was conducted from PubMed, Embase, and China Academic Journals full-text databases. The pre-determined inclusion criteria were clinical literature of endovenous ablation for treating small saphenous varicose veins. Keywords included "ablation", "small saphenous vein", "lesser saphenous vein", "short saphenous vein", "xiaoyinjingmai" and "xiaorong". Of the 506 articles screened, 33 articles were included in this review: 19 articles were related to endovenous laser ablation, five were related to mechanochemical ablation, seven were related to radiofrequency ablation, and two were related to both endovenous laser ablation and radiofrequency ablation. The anatomical success rate of endovenous laser ablation, radiofrequency ablation, and mechanochemical ablation were 94.3%, 96.0%, and 88.1%, respectively, and the heterogeneities were all moderate. Most of the current studies are of a low-quality level of research. Hence, long-term follow-up studies and large-scale randomized controlled trials are required to obtain high-quality evidence. Although the gold standard for the treatment of small saphenous vein insufficiency remains unclear, endovenous ablation is still the recommended method.


Subject(s)
Laser Therapy , Varicose Veins , Venous Insufficiency , Humans , Saphenous Vein/diagnostic imaging , Saphenous Vein/surgery , Varicose Veins/diagnostic imaging , Varicose Veins/surgery , Sclerotherapy/adverse effects , Sclerotherapy/methods , Laser Therapy/adverse effects , Laser Therapy/methods , China , Treatment Outcome , Venous Insufficiency/diagnostic imaging , Venous Insufficiency/surgery
14.
J Agric Food Chem ; 71(42): 15829-15841, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37827988

ABSTRACT

The bioavailability of rambutan peel polyphenols (RPPs) was studied via in vitro simulated digestion, a Caco-2 monolayer cell model, and colonic fermentation. Total phenolic content of RPPs decreased with the progress of the simulated digestion. A total of 38 phenolic compounds were identified during the digestion and colonic fermentation, of which 12 new metabolites were found during colonic fermentation. The possible biotransformation pathways were inferred. Geraniin was transformed into corilagin, ellagic acid, and gallic acid during the digestion and colonic fermentation. Ellagic acid could be further transformed into urolithin under the action of intestinal microbiota. The transformation of ellagitannins could be beneficial to transport on Caco-2 monolayer cell. The antioxidant capacity of RPPs increased with the progress of gastrointestinal digestion. Furthermore, RPPs could increase the yield of short-chain fatty acids, decrease the pH value, promote the growth of beneficial bacteria, and inhibit the growth of pathogenic Escherichia coli/Shigella during colonic fermentation.


Subject(s)
Polyphenols , Sapindaceae , Humans , Polyphenols/pharmacology , Polyphenols/metabolism , Antioxidants/chemistry , Caco-2 Cells , Ellagic Acid , Fermentation , Biological Availability , Sapindaceae/metabolism , Digestion , Phenols
15.
Exp Ther Med ; 26(4): 463, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37664676

ABSTRACT

By studying the effects of DJ-1 overexpression and silencing on the morphological structure and mitophagy of glomerular podocytes, the present study aimed to identify the effects of DJ-1 on glomerular podocyte apoptosis and mitophagy. MPC5 mouse glomerular podocytes were cultured in vitro and divided into four groups: Control, DJ-1 overexpression, empty vector and DJ-1 silencing. DJ-1 gene overexpression and silencing models were prepared, the morphological structures of podocytes and mitochondria in each group were observed, and podocyte apoptosis and DJ-1/PTEN expression were subsequently detected in each group. The experimental results showed reduced volume, retracted foot processes, loosened intercellular connections, presence of dead cells, increased apoptotic rate, increased expression of PTEN, and swollen mitochondria due to the number of vacuoles and autophagosomes in podocytes in the DJ-1 silencing group. The surface areas of podocytes in the DJ-1 overexpression group were greater than those in the control group. Moreover, the structure of the foot processes was more obvious, the number of cells was greater, the intercellular connections were closer, the apoptotic rate was reduced, the expression of PTEN was decreased, the mitochondrial structure was more obvious and the mitochondrial cristae were more whole. Notably, there were no differences between the empty vector and control groups. In conclusion, these results indicated that DJ-1 may regulate podocyte apoptosis and mitophagy through the DJ-1/PTEN pathway, and could maintain the stability of the normal morphology, structure and function of glomerular podocytes.

16.
Health Place ; 84: 103117, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769578

ABSTRACT

Previous research has explored the effect of the built environment on the spread of the coronavirus disease (COVID-19) pandemic. This study extends the existing literature by examining the relationship between pandemic prevalence and density, employment, and transit factors at the county level. Using multilinear spatial-lag regressions and time series clustering analyses on the Smart Location Database encompassing 3141 counties in the United States, our findings reveal the following: (1) Density, employment, and transit variables yield heterogeneous effects to infection rate, death rate, and mortality rate. (2) Pedestrian-oriented road density is positively correlated to the prevalence of COVID-19, every 0.011 miles/acre increase is associated with 1% increase in the infection rate. (3) A consistent negative correlation is observed between jobs per household and infection rate, while a decrease in unemployment rate leads to an increase in the death rate. (4) The results from time series analysis suggest that areas characterized by low auto-oriented intersection density but high pedestrian-oriented road density are more susceptible to the impacts of pandemics. This highlights the need to prioritize pandemic prevention efforts in the suburban and rural areas with low population density, as emphasized in existing literature emphasized.


Subject(s)
COVID-19 , United States/epidemiology , Humans , COVID-19/epidemiology , Pandemics , Prevalence , Employment , SARS-CoV-2
17.
Fitoterapia ; 169: 105606, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37442484

ABSTRACT

Fraxinifolines A-F (1-6), six new B-seco limonoids, together with four known A,D-di-seco ones, were isolated from the twigs with leaves of Tetradium fraxinifolium. Their structures with absolute configurations were elucidated on the basis of analysis of MS, NMR, single-crystal X-ray diffraction and biogenetic pathway. An anti-inflammatory bioassay in vitro showed limonoids 1-3 had significant immunosuppressive effect against the production of pro-inflammatory cytokines (IL-1ß and/or TNF-α) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.


Subject(s)
Limonins , Molecular Structure , Limonins/pharmacology , Limonins/chemistry , Anti-Inflammatory Agents/pharmacology , Cytokines , Tumor Necrosis Factor-alpha/metabolism
18.
Opt Express ; 31(11): 17528-17536, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381483

ABSTRACT

We propose a novel format conversion scheme, which can implement multichannel format conversion from return-to-zero (RZ) to non-return-to-zero (NRZ) for both LP01 and LP11 simultaneously by designing a few-mode fiber Bragg grating (FM-FBG) with comb spectra. To achieve filtering for all channels of the two modes, the FM-FBG response spectra of LP11 is designed to shift with that of LP01 by the WDM-MDM channel spacing. This approach is realized by carefully selecting the specifications of the few-mode fiber (FMF) to fulfill the requirements of the effective refractive index difference between LP01 and LP11. Each single-channel outline of the FM-FBG response spectra is designed according to the algebraic difference between the RZ and NRZ spectra. Numerical results show that both LP01 and LP11 channels with 300-GHz-spaced RZ signals at 40 Gbit/s can be converted into NRZ signals simultaneously, and the converted NRZ signals have high Q-factor and their eye diagrams are clean and open.

19.
Biosci Biotechnol Biochem ; 87(8): 819-824, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37279892

ABSTRACT

Arctigenin (ARG) has potent antifatigue activity, but its clinical application has been restricted for its poor water solubility. In this study, seven ARG derivatives containing different amino acids coupled via an ethoxy linker were synthesized, and tested for their solubility, as well as activities to improve exercise performance in mice. All of the derivatives showed improved solubility compared to that of ARG. Derivative Z-A-6 exhibited the highest activity, showing that the mice ran a 4.88-fold greater distance in the running wheel test and swam a 2.86-fold greater time in the swimming test than those in the blank control group. Z-A-6 treatment increased the plasma superoxide dismutase and catalase concentrations as well as reduced lactic acid and blood urea nitrogen accumulation during exercise. Z-A-6 treatment enhanced the phosphorylation of adenosine monophosphate-activated protein kinase, and no acute toxicity was observed. The results will contribute to the development of potential antifatigue agents.


Subject(s)
Furans , Lignans , Mice , Animals , Furans/pharmacology , Furans/chemistry , Lignans/pharmacology , Lignans/chemistry , Superoxide Dismutase/metabolism , Swimming
20.
Immun Inflamm Dis ; 11(5): e849, 2023 05.
Article in English | MEDLINE | ID: mdl-37249293

ABSTRACT

BACKGROUND: The present study was conducted to determine the inflammatory response in the lungs of children with Mycoplasma pneumoniae pneumonia (MPP). METHODS: This study retrospectively analyzed cytokine levels, cytological findings, and M. pneumoniae (MP)-DNA level in the bronchoalveolar lavage fluid (BALF) of 96 children with MPP. The study utilized Spearman's correlation method to evaluate the contribution of BALF and blood parameters in MPP children. RESULTS: (1) A total of 96 MPP children were classified into the Low MP-DNA MPP group (BALF MP-DNA ≤ 105 copies/mL) and the High MP-DNA MPP group (BALF MP-DNA > 105 copies/mL); the Non-fever MPP group (no fever during the entire course of pneumonia) and the Fever MPP group; the Defervescence MPP group (fever had subsided at the time of bronchoscopy) and the Fervescence MPP group; and the Mild MPP group and the Severe MPP group. (2) The High MP-DNA MPP, Fever MPP, Fervescence MPP, and Severe MPP groups had higher levels of interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α) in their BALF (all p < .05). (3) The proportions of neutrophils and macrophages in the BALF of the High MP-DNA MPP and Fever MPP groups increased and decreased, respectively (all p < .05). (4) In the BALF of MPP children, MP-DNA, IL-6, IL-10, TNF-α, and interferon gamma (IFN-γ) levels positively correlated with neutrophil proportion while negatively correlated with macrophage proportion (all p < .05). (5) The MP-DNA, IL-6, IL-10, TNF-α, and IFN-γ levels in the BALF of MPP children were positively correlated with the levels of C-reactive protein, procalcitonin, lactic dehydrogenase, fibrinogen, and d-dimer, while they were negatively correlated with the albumin level (all p < .05). CONCLUSIONS: In children with MPP, the pulmonary inflammatory immune response was stronger in the High MP-DNA MPP, Fever MPP, Fervescence MPP, and Severe MPP groups. The relationship between pulmonary cytokine levels, MP-DNA load, and serum inflammatory parameters were found to be weak.


Subject(s)
Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Humans , Child , Mycoplasma pneumoniae/genetics , Cytokines , Interleukin-10 , Bronchoalveolar Lavage Fluid , Interleukin-6/analysis , Tumor Necrosis Factor-alpha , Retrospective Studies , DNA , Interferon-gamma
SELECTION OF CITATIONS
SEARCH DETAIL
...