Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
IEEE Trans Cybern ; PP2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602848

ABSTRACT

Bilevel optimization is a special type of optimization in which one problem is embedded within another. The bilevel optimization problem (BLOP) of which both levels are multiobjective functions is usually called the multiobjective BLOP (MBLOP). The expensive computation and nested features make it challenging to solve. Most existing studies look for complete lower-level solutions for every upper-level variable. However, not every lower-level solution will participate in the bilevel Pareto-optimal front. Under a limited computational budget, instead of wasting resources to find complete lower-level solutions that may not be in the feasible region or inducible region of the MBLOP, it is better to concentrate on finding the solutions with better performance. Bearing these considerations in mind, we propose a multiobjective bilevel optimization solving routine combined with a knee point driven algorithm. Specifically, the proposed algorithm aims to quickly find feasible solutions considering the lower-level constraints in the first stage and then concentrates the computational resources on finding solutions with better performance. Besides, we develop several multiobjective bilevel test problems with different properties, such as scalable, deceptive, convexity, and (dis)continuous. Finally, the performance of the algorithm is validated on a practical petroleum refining bilevel problem, which involves a multiobjective environmental regulation problem and a petroleum refining operational problem. Comprehensive experiments fully demonstrate the effectiveness of our presented algorithm in solving MBLOPs.

2.
IEEE Trans Cybern ; 54(3): 1828-1840, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37104105

ABSTRACT

Neural architecture search (NAS) can automatically design architectures for deep neural networks (DNNs) and has become one of the hottest research topics in the current machine learning community. However, NAS is often computationally expensive because a large number of DNNs require to be trained for obtaining performance during the search process. Performance predictors can greatly alleviate the prohibitive cost of NAS by directly predicting the performance of DNNs. However, building satisfactory performance predictors highly depends on enough trained DNN architectures, which are difficult to obtain due to the high computational cost. To solve this critical issue, we propose an effective DNN architecture augmentation method named graph isomorphism-based architecture augmentation method (GIAug) in this article. Specifically, we first propose a mechanism based on graph isomorphism, which has the merit of efficiently generating a factorial of n (i.e., n ) diverse annotated architectures upon a single architecture having n nodes. In addition, we also design a generic method to encode the architectures into the form suitable to most prediction models. As a result, GIAug can be flexibly utilized by various existing performance predictors-based NAS algorithms. We perform extensive experiments on CIFAR-10 and ImageNet benchmark datasets on small-, medium- and large-scale search space. The experiments show that GIAug can significantly enhance the performance of the state-of-the-art peer predictors. In addition, GIAug can save three magnitude order of computation cost at most on ImageNet yet with similar performance when compared with state-of-the-art NAS algorithms.

3.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3064-3078, 2024 May.
Article in English | MEDLINE | ID: mdl-38055367

ABSTRACT

Recently, brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks. However, these SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation. Given that each neural coding scheme possesses its own merits and drawbacks, these SNNs encounter challenges in achieving optimal performance such as accuracy, response time, efficiency, and robustness, all of which are crucial for practical applications. In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes. As an initial exploration in this direction, we propose a hybrid neural coding and learning framework, which encompasses a neural coding zoo with diverse neural coding schemes discovered in neuroscience. Additionally, it incorporates a flexible neural coding assignment strategy to accommodate task-specific requirements, along with novel layer-wise learning methods to effectively implement hybrid coding SNNs. We demonstrate the superiority of the proposed framework on image classification and sound localization tasks. Specifically, the proposed hybrid coding SNNs achieve comparable accuracy to state-of-the-art SNNs, while exhibiting significantly reduced inference latency and energy consumption, as well as high noise robustness. This study yields valuable insights into hybrid neural coding designs, paving the way for developing high-performance neuromorphic systems.

4.
IEEE Trans Cybern ; 54(1): 558-571, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37216256

ABSTRACT

Evolutionary multitask optimization is an emerging research topic that aims to solve multiple tasks simultaneously. A general challenge in solving multitask optimization problems (MTOPs) is how to effectively transfer common knowledge between/among tasks. However, knowledge transfer in existing algorithms generally has two limitations. First, knowledge is only transferred between the aligned dimensions of different tasks rather than between similar or related dimensions. Second, the knowledge transfer among the related dimensions belonging to the same task is ignored. To overcome these two limitations, this article proposes an interesting and efficient idea that divides individuals into multiple blocks and transfers knowledge at the block-level, called the block-level knowledge transfer (BLKT) framework. BLKT divides the individuals of all the tasks into multiple blocks to obtain a block-based population, where each block corresponds to several consecutive dimensions. Similar blocks coming from either the same task or different tasks are grouped into the same cluster to evolve. In this way, BLKT enables the transfer of knowledge between similar dimensions that are originally either aligned or unaligned or belong to either the same task or different tasks, which is more rational. Extensive experiments conducted on CEC17 and CEC22 MTOP benchmarks, a new and more challenging compositive MTOP test suite, and real-world MTOPs all show that the performance of BLKT-based differential evolution (BLKT-DE) is superior to the compared state-of-the-art algorithms. In addition, another interesting finding is that the BLKT-DE is also promising in solving single-task global optimization problems, achieving competitive performance with some state-of-the-art algorithms.

5.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 13778-13795, 2023 11.
Article in English | MEDLINE | ID: mdl-37486851

ABSTRACT

The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD) has emerged to relieve the tension in healthcare institutions by detecting abnormal neuroimaging-derived phenotypes. However, training deep learning models relies on sufficient annotated datasets, which can be costly and laborious. Semi-supervised learning (SSL) and transfer learning (TL) can mitigate this challenge by leveraging unlabeled data within the same institution and advantageous information from source domain, respectively. This work is the first attempt to propose an effective semi-supervised transfer learning (SSTL) framework dubbed S3TL for CAD of mental disorders on fMRI data. Within S3TL, a secure cross-domain feature alignment method is developed to generate target-related source model in SSL. Subsequently, we propose an enhanced dual-stage pseudo-labeling approach to assign pseudo-labels for unlabeled samples in target domain. Finally, an advantageous knowledge transfer method is conducted to improve the generalization capability of the target model. Comprehensive experimental results demonstrate that S3TL achieves competitive accuracies of 69.14%, 69.65%, and 72.62% on ABIDE-I, ABIDE-II, and ADHD-200 datasets, respectively. Furthermore, the simulation experiments also demonstrate the application potential of S3TL through model interpretation analysis and federated learning extension.


Subject(s)
Magnetic Resonance Imaging , Mental Disorders , Humans , Algorithms , Mental Disorders/diagnostic imaging , Neuroimaging , Supervised Machine Learning
6.
Article in English | MEDLINE | ID: mdl-37027556

ABSTRACT

Neuroimaging techniques have been widely adopted to detect the neurological brain structures and functions of the nervous system. As an effective noninvasive neuroimaging technique, functional magnetic resonance imaging (fMRI) has been extensively used in computer-aided diagnosis (CAD) of mental disorders, e.g., autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). In this study, we propose a spatial-temporal co-attention learning (STCAL) model for diagnosing ASD and ADHD from fMRI data. In particular, a guided co-attention (GCA) module is developed to model the intermodal interactions of spatial and temporal signal patterns. A novel sliding cluster attention module is designed to address global feature dependency of self-attention mechanism in fMRI time series. Comprehensive experimental results demonstrate that our STCAL model can achieve competitive accuracies of 73.0 ± 4.5%, 72.0 ± 3.8%, and 72.5 ± 4.2% on the ABIDE I, ABIDE II, and ADHD-200 datasets, respectively. Moreover, the potential for feature pruning based on the co-attention scores is validated by the simulation experiment. The clinical interpretation analysis of STCAL can allow medical professionals to concentrate on the discriminative regions of interest and key time frames from fMRI data.

7.
IEEE Trans Cybern ; 53(11): 7295-7308, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37022822

ABSTRACT

The evolutionary multitask optimization (EMTO) algorithm is a promising approach to solve many-task optimization problems (MaTOPs), in which similarity measurement and knowledge transfer (KT) are two key issues. Many existing EMTO algorithms estimate the similarity of population distribution to select a set of similar tasks and then perform KT by simply mixing individuals among the selected tasks. However, these methods may be less effective when the global optima of the tasks greatly differ from each other. Therefore, this article proposes to consider a new kind of similarity, namely, shift invariance, between tasks. The shift invariance is defined that the two tasks are similar after linear shift transformation on both the search space and the objective space. To identify and utilize the shift invariance between tasks, a two-stage transferable adaptive differential evolution (TRADE) algorithm is proposed. In the first evolution stage, a task representation strategy is proposed to represent each task by a vector that embeds the evolution information. Then, a task grouping strategy is proposed to group the similar (i.e., shift invariant) tasks into the same group while the dissimilar tasks into different groups. In the second evolution stage, a novel successful evolution experience transfer method is proposed to adaptively utilize the suitable parameters by transferring successful parameters among similar tasks within the same group. Comprehensive experiments are carried out on two representative MaTOP benchmarks with a total of 16 instances and a real-world application. The comparative results show that the proposed TRADE is superior to some state-of-the-art EMTO algorithms and single-task optimization algorithms.

8.
IEEE Trans Neural Netw Learn Syst ; 34(8): 4631-4645, 2023 Aug.
Article in English | MEDLINE | ID: mdl-34587103

ABSTRACT

Large-scale multiobjective optimization problems (LSMOPs) are characterized as optimization problems involving hundreds or even thousands of decision variables and multiple conflicting objectives. To solve LSMOPs, some algorithms designed a variety of strategies to track Pareto-optimal solutions (POSs) by assuming that the distribution of POSs follows a low-dimensional manifold. However, traditional genetic operators for solving LSMOPs have some deficiencies in dealing with the manifold, which often results in poor diversity, local optima, and inefficient searches. In this work, a generative adversarial network (GAN)-based manifold interpolation framework is proposed to learn the manifold and generate high-quality solutions on the manifold, thereby improving the optimization performance of evolutionary algorithms. We compare the proposed approach with several state-of-the-art algorithms on various large-scale multiobjective benchmark functions. The experimental results demonstrate that significant improvements have been achieved by the proposed framework in solving LSMOPs.

9.
IEEE Trans Cybern ; 53(4): 2544-2557, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34919526

ABSTRACT

Many real-world optimization problems require searching for multiple optimal solutions simultaneously, which are called multimodal optimization problems (MMOPs). For MMOPs, the algorithm is required both to enlarge population diversity for locating more global optima and to enhance refine ability for increasing the accuracy of the obtained solutions. Thus, numerous niching techniques have been proposed to divide the population into different niches, and each niche is responsible for searching on one or more peaks. However, it is often a challenge to distinguish proper individuals as niche centers in existing niching approaches, which has become a key issue for efficiently solving MMOPs. In this article, the niche center distinguish (NCD) problem is treated as an optimization problem and an NCD-based differential evolution (NCD-DE) algorithm is proposed. In NCD-DE, the niches are formed by using an internal genetic algorithm (GA) to online solve the NCD optimization problem. In the internal GA, a fitness-entropy measurement objective function is designed to evaluate whether a group of niche centers (i.e., encoded by a chromosome in the internal GA) is promising. Moreover, to enhance the exploration and exploitation abilities of NCD-DE in solving the MMOPs, a niching and global cooperative mutation strategy that uses both niche and population information is proposed to generate new individuals. The proposed NCD-DE is compared with some state-of-the-art and recent well-performing algorithms. The experimental results show that NCD-DE achieves better or competitive performance on both the accuracy and completeness of the solutions than the compared algorithms.

10.
IEEE Trans Neural Netw Learn Syst ; 34(9): 6081-6095, 2023 Sep.
Article in English | MEDLINE | ID: mdl-34928806

ABSTRACT

Class imbalance is a common issue in the community of machine learning and data mining. The class-imbalance distribution can make most classical classification algorithms neglect the significance of the minority class and tend toward the majority class. In this article, we propose a label enhancement method to solve the class-imbalance problem in a graph manner, which estimates the numerical label and trains the inductive model simultaneously. It gives a new perspective on the class-imbalance learning based on the numerical label rather than the original logical label. We also present an iterative optimization algorithm and analyze the computation complexity and its convergence. To demonstrate the superiority of the proposed method, several single-label and multilabel datasets are applied in the experiments. The experimental results show that the proposed method achieves a promising performance and outperforms some state-of-the-art single-label and multilabel class-imbalance learning methods.

11.
IEEE Trans Neural Netw Learn Syst ; 34(1): 446-460, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34288879

ABSTRACT

Spiking neural networks (SNNs) represent the most prominent biologically inspired computing model for neuromorphic computing (NC) architectures. However, due to the nondifferentiable nature of spiking neuronal functions, the standard error backpropagation algorithm is not directly applicable to SNNs. In this work, we propose a tandem learning framework that consists of an SNN and an artificial neural network (ANN) coupled through weight sharing. The ANN is an auxiliary structure that facilitates the error backpropagation for the training of the SNN at the spike-train level. To this end, we consider the spike count as the discrete neural representation in the SNN and design an ANN neuronal activation function that can effectively approximate the spike count of the coupled SNN. The proposed tandem learning rule demonstrates competitive pattern recognition and regression capabilities on both the conventional frame- and event-based vision datasets, with at least an order of magnitude reduced inference time and total synaptic operations over other state-of-the-art SNN implementations. Therefore, the proposed tandem learning rule offers a novel solution to training efficient, low latency, and high-accuracy deep SNNs with low computing resources.

12.
IEEE Trans Neural Netw Learn Syst ; 34(11): 9040-9053, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35298385

ABSTRACT

Neural architecture search (NAS) has attracted much attention in recent years. It automates the neural network construction for different tasks, which is traditionally addressed manually. In the literature, evolutionary optimization (EO) has been proposed for NAS due to its strong global search capability. However, despite the success enjoyed by EO, it is worth noting that existing EO algorithms for NAS are often very computationally expensive, which makes these algorithms unpractical in reality. Keeping this in mind, in this article, we propose an efficient memetic algorithm (MA) for automated convolutional neural network (CNN) architecture search. In contrast to existing EO algorithms for CNN architecture design, a new cell-based architecture search space, and new global and local search operators are proposed for CNN architecture search. To further improve the efficiency of our proposed algorithm, we develop a one-epoch-based performance estimation strategy without any pretrained models to evaluate each found architecture on the training datasets. To investigate the performance of the proposed method, comprehensive empirical studies are conducted against 34 state-of-the-art peer algorithms, including manual algorithms, reinforcement learning (RL) algorithms, gradient-based algorithms, and evolutionary algorithms (EAs), on widely used CIFAR10 and CIFAR100 datasets. The obtained results confirmed the efficacy of the proposed approach for automated CNN architecture design.

13.
IEEE Trans Cybern ; 53(11): 6829-6842, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35476557

ABSTRACT

The dendritic neural model (DNM) is computationally faster than other machine-learning techniques, because its architecture can be implemented by using logic circuits and its calculations can be performed entirely in binary form. To further improve the computational speed, a straightforward approach is to generate a more concise architecture for the DNM. Actually, the architecture search is a large-scale multiobjective optimization problem (LSMOP), where a large number of parameters need to be set with the aim of optimizing accuracy and structural complexity simultaneously. However, the issues of irregular Pareto front, objective discontinuity, and population degeneration strongly limit the performances of conventional multiobjective evolutionary algorithms (MOEAs) on the specific problem. Therefore, a novel competitive decomposition-based MOEA is proposed in this study, which decomposes the original problem into several constrained subproblems, with neighboring subproblems sharing overlapping regions in the objective space. The solutions in the overlapping regions participate in environmental selection for the neighboring subproblems and then propagate the selection pressure throughout the entire population. Experimental results demonstrate that the proposed algorithm can possess a more powerful optimization ability than the state-of-the-art MOEAs. Furthermore, both the DNM itself and its hardware implementation can achieve very competitive classification performances when trained by the proposed algorithm, compared with numerous widely used machine-learning approaches.

14.
IEEE Trans Cybern ; 53(10): 6289-6302, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35476567

ABSTRACT

Decomposition methods have been widely employed in evolutionary algorithms for tackling multiobjective optimization problems (MOPs) due to their good mathematical explanation and promising performance. However, most decomposition methods only use a single ideal or nadir point to guide the evolution, which are not so effective for solving MOPs with extremely convex/concave Pareto fronts (PFs). To solve this problem, this article proposes an effective method to adapt decomposed directions (ADDs) for solving MOPs. Instead of using one single ideal or nadir point, each weight vector has one exclusive ideal point in our method for decomposition, in which the decomposed directions are adapted during the search process. In this way, the adapted decomposed directions can evenly and entirely cover the PF of the target MOP. The effectiveness of our method is analyzed theoretically and verified experimentally when embedding it into three representative multiobjective evolutionary algorithms (MOEAs), which can significantly improve their performance. When compared to seven competitive MOEAs, the experiments also validate the advantages of our method for solving 39 artificial MOPs with various PFs and one real-world MOP.

15.
IEEE Trans Cybern ; 53(11): 6937-6950, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35544503

ABSTRACT

Variable grouping provides an efficient approach to large-scale optimization, and multipopulation strategies are effective for both large-scale optimization and dynamic optimization. However, variable grouping is not well studied in large-scale dynamic optimization when cooperating with multipopulation strategies. Specifically, when the numbers/sizes of the variable subcomponents are large, the performance of the algorithms will be substantially degraded. To address this issue, we propose a bilevel variable grouping (BLVG)-based framework. First, the primary grouping applies a state-of-the-art variable grouping method based on variable interaction analysis to group the variables into subcomponents. Second, the secondary grouping further groups the subcomponents into variable cells, that is, combination variable cells and decomposition variable cells. We then tailor a multipopulation strategy to process the two types of variable cells efficiently in a cooperative coevolutionary (CC) way. As indicated by the empirical study on large-scale dynamic optimization problems (DOPs) of up to 300 dimensions, the proposed framework outperforms several state-of-the-art frameworks for large-scale dynamic optimization.

16.
IEEE Trans Cybern ; 53(6): 3624-3638, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35333730

ABSTRACT

Cooperative coevolution (CC) algorithms based on variable decomposition methods are efficient in solving large-scale optimization problems (LSOPs). However, many decomposition methods, such as the differential grouping (DG) method and its variants, are based on the theorem of function additively separable, which may not work well on problems that are not additively separable and will result in a bottleneck for CC to solve various LSOPs. This deficiency motivates us to study how the decomposition method can decompose more kinds of separable functions, such as the multiplicatively separable function, to improve the general problem-solving ability of CC on LSOPs. With this concern, this article makes the first attempt to decompose multiplicatively separable functions and proposes a novel method called dual DG (DDG) for better LSOP decomposition and optimization. The novelty and advantage of DDG are that it can be suitable for not only additively separable functions but also multiplicatively separable functions, which can considerably expand the application scope of CC. In this article, we will first define the multiplicatively separable function, and then mathematically show its relationship to the additively separable function and how they can be transformed into each other. Based on this, the DDG can use two kinds of differences to detect the separable structure of both additively and multiplicatively separable functions. In addition, the time complexity of DDG is analyzed and a DDG-based CC algorithm framework is developed for solving LSOPs. To verify the superiority of DDG, experiments and comparisons with some state-of-the-art and champion algorithms are conducted not only on 30 LSOPs based on the test suite of the IEEE CEC large-scale global optimization competition, but also on a case study of the parameter optimization for a neural network-based application.

17.
IEEE Trans Cybern ; 53(7): 4162-4174, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35113792

ABSTRACT

Blood pressure (BP) is one of the most important indicators of health. BP that is too high or too low causes varying degrees of diseases, such as renal impairment, cerebrovascular incidents, and cardiovascular diseases. Since traditional cuff-based BP measurement techniques have the drawbacks of patient discomfort and the impossibility of continuous BP monitoring, noninvasive cuffless continuous BP measurement has become a popular topic. The common noninvasive approach uses machine-learning (ML) algorithms to estimate BP by using the features extracted from simultaneous photoplethysmogram (PPG) and electrocardiogram (ECG) signals, such as the pulse transit time and pulse wave velocity. This study investigates the BP estimation performance of the novel dendritic neural regression (DNR) method proposed by us. Unlike conventional neural networks, DNR utilizes the multiplication operator as the excitation function in each dendritic branch, inspired by biological neuron phenomena, and can effectively capture nonlinear relationships between distinct input features. In addition, AMSGrad is used as the optimization algorithm to further enhance the dendritic neural model's performance. The experimental results show that by being fed a combination of the raw features extracted from the ECG and PPG signals and the components of the BP mathematical models, DNR can increase the accuracy of systolic BP, diastolic BP, and mean arterial pressure estimation significantly, which are superior to the state-of-the-art ML techniques. According to the British Hypertension Society protocol, DNR achieves a grade of A for the long-term BP estimation. Considering its architectural simplicity and powerful performance, the proposed method can be regarded as a reliable tool for estimating long-term continuous BP in a noninvasive cuffless way.


Subject(s)
Photoplethysmography , Pulse Wave Analysis , Humans , Blood Pressure/physiology , Photoplethysmography/methods , Blood Pressure Determination/methods , Algorithms
18.
IEEE Trans Neural Netw Learn Syst ; 34(12): 10254-10265, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35442893

ABSTRACT

Emulating the spike-based processing in the brain, spiking neural networks (SNNs) are developed and act as a promising candidate for the new generation of artificial neural networks that aim to produce efficient cognitions as the brain. Due to the complex dynamics and nonlinearity of SNNs, designing efficient learning algorithms has remained a major difficulty, which attracts great research attention. Most existing ones focus on the adjustment of synaptic weights. However, other components, such as synaptic delays, are found to be adaptive and important in modulating neural behavior. How could plasticity on different components cooperate to improve the learning of SNNs remains as an interesting question. Advancing our previous multispike learning, we propose a new joint weight-delay plasticity rule, named TDP-DL, in this article. Plastic delays are integrated into the learning framework, and as a result, the performance of multispike learning is significantly improved. Simulation results highlight the effectiveness and efficiency of our TDP-DL rule compared to baseline ones. Moreover, we reveal the underlying principle of how synaptic weights and delays cooperate with each other through a synthetic task of interval selectivity and show that plastic delays can enhance the selectivity and flexibility of neurons by shifting information across time. Due to this capability, useful information distributed away in the time domain can be effectively integrated for a better accuracy performance, as highlighted in our generalization tasks of the image, speech, and event-based object recognitions. Our work is thus valuable and significant to improve the performance of spike-based neuromorphic computing.

19.
IEEE Trans Biomed Eng ; 70(4): 1137-1149, 2023 04.
Article in English | MEDLINE | ID: mdl-36178988

ABSTRACT

OBJECTIVE: Deep learning (DL) techniques have been introduced to assist doctors in the interpretation of medical images by detecting image-derived phenotype abnormality. Yet the privacy-preserving policy of medical images disables the effective training of DL model using sufficiently large datasets. As a decentralized computing paradigm to address this issue, federated learning (FL) allows the training process to occur in individual institutions with local datasets, and then aggregates the resultant weights without risk of privacy leakage. METHODS: We propose an effective federated multi-task learning (MTL) framework to jointly identify multiple related mental disorders based on functional magnetic resonance imaging data. A federated contrastive learning-based feature extractor is developed to extract high-level features across client models. To ease the optimization conflicts of updating shared parameters in MTL, we present a federated multi-gate mixture of expert classifier for the joint classification. The proposed framework also provides practical modules, including personalized model learning, privacy protection, and federated biomarker interpretation. RESULTS: On real-world datasets, the proposed framework achieves robust diagnosis accuracies of 69.48 ± 1.6%, 71.44 ± 3.2%, and 83.29 ± 3.2% in autism spectrum disorder, attention deficit/hyperactivity disorder, and schizophrenia, respectively. CONCLUSION: The proposed framework can effectively ease the domain shift between clients via federated MTL. SIGNIFICANCE: The current work provides insights into exploiting the advantageous knowledge shared in related mental disorders for improving the generalization capability of computer-aided detection approaches.


Subject(s)
Autism Spectrum Disorder , Mental Disorders , Humans , Autism Spectrum Disorder/diagnostic imaging , Mental Disorders/diagnostic imaging , Magnetic Resonance Imaging
20.
IEEE Trans Cybern ; 53(4): 2685-2697, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35687633

ABSTRACT

The radial basis function (RBF) model and the Kriging model have been widely used in the surrogate-assisted evolutionary algorithms (SAEAs). Based on their characteristics, a global and local surrogate-assisted differential evolution algorithm (GL-SADE) for high-dimensional expensive problems is proposed in this article, in which a global RBF model is trained with all samples to estimate a global trend, and then its optima is used to significantly accelerate the convergence process. A local Kriging model prefers to select points with good predicted fitness and great uncertainty, which can effectively prevent the search from getting trapped into local optima. When the local Kriging model finds the best solution so far, a reward search strategy is executed to further exploit the local Kriging model. The experiments on a set of benchmark functions with dimensions varying from 30 to 200 are conducted to evaluate the performance of the proposed algorithm. The experimental results of the proposed algorithm are compared to four state-of-the-art algorithms to show its effectiveness and efficiency in solving high-dimensional expensive problems. Besides, GL-SADE is applied to an airfoil optimization problem to show its effectiveness.

SELECTION OF CITATIONS
SEARCH DETAIL
...