Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 1815: 317-332, 2018.
Article in English | MEDLINE | ID: mdl-29981132

ABSTRACT

Somaclonal variation (SC) in plants regenerated from tissue culture, via organogenesis or somatic embryogenesis, is frequently associated with abnormalities in the content of deoxyribonucleic acid (DNA), viz., aneuploidy and polyploidy. Flow cytometry (FCM) using the nucleic acid-specific fluorochrome propidium iodide has proven to be a rapid, simple, and reproducible technique for assessment of DNA content and ploidy variation occurring in plant tissue cultures. Here an outline of the sample preparation of suspension with intact nuclei by the two-step standard method, and FCM analysis of DNA ploidy stability in plants regenerated from embryogenic cell suspension (ECS) of banana Musa acuminata, AAA, cv. Grand Naine (Cavendish subgroup) using an internal standard is described.


Subject(s)
Flow Cytometry/methods , Plants/genetics , Tissue Culture Techniques/methods , Calibration , Cell Nucleus/metabolism , DNA, Plant/genetics , Fluorescent Dyes/metabolism , Genome Size , Genome, Plant , Ploidies , Reference Standards
2.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 2146-56, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24100332

ABSTRACT

To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol(-1) (15.1 kJ mol(-1)). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the ß-sandwich scaffold. On the other hand, the substitution N239Y creates an advantageous hydrophobic contact between the aromatic ring of this tyrosine and the adjacent Leu137. Surprisingly, the rescued cancer mutant shows much larger structural deviations than the cancer mutant alone when compared with wild-type p53. These suppressor mutations appear to rescue p53 function by creating novel intradomain interactions that stabilize the core domain, allowing compensation for the destabilizing V157F mutation.


Subject(s)
Gene Expression Regulation, Neoplastic , Mutation/genetics , Oncogenes/genetics , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Amino Acid Motifs/genetics , Crystallography, X-Ray , DNA-Binding Proteins/genetics , Genetic Variation/genetics , Humans , Neoplasms/chemistry , Neoplasms/genetics , Protein Stability , Protein Structure, Tertiary/genetics , Tumor Suppressor Protein p53/physiology , X-Ray Diffraction
3.
Proc Natl Acad Sci U S A ; 110(15): 6079-84, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23530240

ABSTRACT

Granulocyte-colony stimulating factor (G-CSF) promotes mobilization of CD11b(+)Gr1(+) myeloid cells and has been implicated in resistance to anti-VEGF therapy in mouse models. High G-CSF production has been associated with a poor prognosis in cancer patients. Here we show that activation of the RAS/MEK/ERK pathway regulates G-CSF expression through the Ets transcription factor. Several growth factors induced G-CSF expression by a MEK-dependent mechanism. Inhibition of G-CSF release with a MEK inhibitor markedly reduced G-CSF production in vitro and synergized with anti-VEGF antibodies to reduce CD11b(+)Ly6G(+) neutrophil mobilization and tumor growth and led to increased survival in animal models of cancer, including a genetically engineered mouse model of pancreatic adenocarcinoma. Analysis of biopsies from pancreatic cancer patients revealed increased phospho-MEK, G-CSF, and Ets expression and enhanced neutrophil recruitment compared with normal pancreata. These results provide insights into G-CSF regulation and on the mechanism of action of MEK inhibitors and point to unique anticancer strategies.


Subject(s)
Granulocyte Colony-Stimulating Factor/metabolism , MAP Kinase Signaling System , Neutrophils/cytology , Proto-Oncogene Protein c-ets-2/metabolism , Vascular Endothelial Growth Factor A/therapeutic use , Animals , Binding Sites , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Mice, Transgenic , Neoplasms/metabolism , Neovascularization, Pathologic , Neutrophil Infiltration , Protein-Tyrosine Kinases/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors
4.
Anal Biochem ; 430(2): 171-8, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22929697

ABSTRACT

Short interfering RNA (siRNA) has therapeutic potential. However, efficient delivery is a formidable task. To facilitate delivery of siRNA into cells, we covalently conjugated siRNA to antibodies that bind to cell surface proteins and internalize. Understanding how these antibody-siRNA conjugates function in vivo requires pharmacokinetic analysis. Thus, we developed a simple real-time antigen capture reverse transcription-polymerase chain reaction (RT-PCR) assay to detect intact antibody-siRNA conjugates. Biotinylated antigen bound to streptavidin-coated PCR tubes was used to capture antibody-siRNA conjugate. The captured antibody-siRNA conjugate was then reverse-transcribed in the same tube, avoiding a sample transfer step. This reproducible assay had a wide standard curve range of 0.029 to 480ng/ml and could detect as low as 0.58ng/ml antibody-siRNA conjugates in mouse serum. The presence of unconjugated antibody that could be generated from siRNA degradation in vivo did not affect the assay as long as the total antibody concentration in the antigen capture step did not exceed 480ng/ml. Using this assay, we observed a more rapid decrease in serum antibody-siRNA conjugate concentrations than the total antibody concentrations in mice dosed with antibody-siRNA conjugates, suggesting loss of siRNA from the antibody. This assay is useful for optimizing antibody-siRNA and likely aptamer-siRNA conjugates to improve pharmacokinetics and aid siRNA delivery.


Subject(s)
Antibodies/analysis , Antigens/immunology , RNA, Small Interfering/analysis , Reverse Transcriptase Polymerase Chain Reaction , Animals , Antibodies/blood , Antibodies/chemistry , Antibodies/immunology , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay , RNA, Small Interfering/blood , RNA, Small Interfering/chemistry
5.
Am J Pathol ; 179(4): 1667-80, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21819959

ABSTRACT

Experimental nonhuman primate models of asthma exhibit multiple features that are characteristic of an eosinophilic/T helper 2 (Th2)-high asthma subtype, characterized by the increased expression of Th2 cytokines and responsive genes, in humans. Here, we determine the molecular pathways that are present in a house dust mite-induced rhesus asthma model by analyzing the genomewide lung gene expression profile of the rhesus model and comparing it with that of human Th2-high asthma. We find that a prespecified human Th2 inflammation gene set from human Th2-high asthma is also present in rhesus asthma and that the expression of the genes comprising this gene set is positively correlated in human and rhesus asthma. In addition, as in human Th2-high asthma, the Th2 gene set correlates with physiologic markers of allergic inflammation and disease in rhesus asthma. Comparison of lung gene expression profiles from human Th2-high asthma, the rhesus asthma model, and a common mouse asthma model indicates that genes associated with Th2 inflammation are shared by all three species. However, some pathophysiologic aspects of human asthma (ie, subepithelial fibrosis, angiogenesis, neural biology, and immune host defense biology) are better represented in the gene expression profile of the rhesus model than in the mouse model. Further study of the rhesus asthma model may yield novel insights into the pathogenesis of human Th2-high asthma.


Subject(s)
Asthma/genetics , Asthma/physiopathology , Gene Expression Regulation , Lung/immunology , Lung/physiopathology , Macaca mulatta/immunology , Signal Transduction/genetics , Animals , Antigens, Dermatophagoides/immunology , Asthma/complications , Asthma/immunology , Disease Models, Animal , Gene Expression Profiling , Humans , Immunization , Inflammation/complications , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Lung/metabolism , Mice , Pyroglyphidae/immunology , Th2 Cells/immunology , Up-Regulation/genetics
6.
Proc Natl Acad Sci U S A ; 107(50): 21248-55, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21081700

ABSTRACT

Priming of the organ-specific premetastatic sites is thought to be an important yet incompletely understood step during metastasis. In this study, we show that the metastatic tumors we examined overexpress granulocyte-colony stimulating factor (G-CSF), which expands and mobilizes Ly6G+Ly6C+ granulocytes and facilitates their subsequent homing at distant organs even before the arrival of tumor cells. Moreover, G-CSF-mobilized Ly6G+Ly6C+ cells produce the Bv8 protein, which has been implicated in angiogenesis and mobilization of myeloid cells. Anti-G-CSF or anti-Bv8 antibodies significantly reduced lung metastasis. Transplantation of Bv8 null fetal liver cells into lethally irradiated hosts also reduced metastasis. We identified an unexpected role for Bv8: the ability to stimulate tumor cell migration through activation of one of the Bv8 receptors, prokineticin receptor (PKR)-1. Finally, we show that administration of recombinant G-CSF is sufficient to increase the numbers of Ly6G+Ly6C+ cells in organ-specific metastatic sites and results in enhanced metastatic ability of several tumors.


Subject(s)
Antigens, Ly/immunology , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocytes/drug effects , Granulocytes/immunology , Lung Neoplasms/pathology , Neoplasm Metastasis , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Movement , Female , Gene Expression Profiling , Granulocyte Colony-Stimulating Factor/genetics , Granulocytes/cytology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Mice, SCID , Microarray Analysis , Neoplasm Transplantation , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology
7.
J Clin Invest ; 120(6): 2218-29, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20458139

ABSTRACT

IgE-mediated hypersensitivity is central to the pathogenesis of asthma and other allergic diseases. Although neutralization of serum IgE with IgE-specific antibodies is in general an efficacious treatment for allergic asthma, one limitation of this approach is its lack of effect on IgE production. Here, we have developed a strategy to disrupt IgE production by generating monoclonal antibodies that target a segment of membrane IgE on human IgE-switched B cells that is not present in serum IgE. This segment is known as the M1' domain, and using genetically modified mice that contain the human M1' domain inserted into the mouse IgE locus, we demonstrated that M1'-specific antibodies reduced serum IgE and IgE-producing plasma cells in vivo, without affecting other immunoglobulin isotypes. M1'-specific antibodies were effective when delivered prophylactically and therapeutically in mouse models of immunization, allergic asthma, and Nippostrongylus brasiliensis infection, likely by inducing apoptosis of IgE-producing B cells. In addition, we generated a humanized M1'-specific antibody that was active on primary human cells in vivo, as determined by its reduction of serum IgE levels and IgE plasma cell numbers in a human PBMC-SCID mouse model. Thus, targeting of human IgE-producing B cells with apoptosis-inducing M1'-specific antibodies may be a novel treatment for asthma and allergy.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies/immunology , B-Lymphocytes/drug effects , Hypersensitivity, Immediate/immunology , Mice, SCID/immunology , Animals , Antibodies, Monoclonal/immunology , Asthma/immunology , B-Lymphocytes/immunology , Humans , Hypersensitivity/immunology , Immunization , Mice , Mice, Transgenic , Nippostrongylus/drug effects , Nippostrongylus/immunology
8.
Clin Cancer Res ; 15(8): 2675-84, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19336519

ABSTRACT

PURPOSE: Bv8, also known as prokineticin 2, has been recently shown to be a mediator of myeloid cell-dependent tumor angiogenesis in mouse models. We wished to determine whether these findings might be potentially relevant to human disease. EXPERIMENTAL DESIGN: We characterized Bv8 expression in human blood cells in vitro and in vivo, and did Bv8 immunohistochemistry in human tumor sections. We also partially purified Bv8 from human neutrophils and tested its bioactivity. RESULTS: We found that Bv8 expression is regulated by several cytokines in a cell type-specific fashion. Both granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor induced Bv8 expression in neutrophils and bone marrow cells, whereas interleukin 10 up-regulated Bv8 expression in monocytes and lymphocytes. Bv8 potently promoted neutrophil chemotaxis. Bv8 protein isolated from human neutrophils was found to be biologically active. Of the two receptors for Bv8 [prokineticin receptor 1(PKR1)/endocrine gland-derived vascular endothelial growth factor receptor 1 (EG-VEGFR1) and PKR2/EG-VEGFR2], only PKR2/EG-VEGFR2 was detectable in human neutrophils. Also, we found a marked up-regulation of Bv8 mRNA and protein in peripheral blood mononuclear cells from G-CSF-treated donors compared with those from untreated individuals, verifying our in vitro observations. Finally, immunohistochemistry showed Bv8 expression in neutrophils infiltrating human tumors. CONCLUSIONS: These results provide the basis for further investigation of the pathophysiologic role of Bv8 in human tumors and inflammatory disorders and, potentially, for therapeutic application of Bv8 inhibitors.


Subject(s)
Gastrointestinal Hormones/blood , Monocytes/metabolism , Neuropeptides/blood , Neutrophils/metabolism , Cell Movement/drug effects , Cell Movement/physiology , Cells, Cultured , Chemotaxis/drug effects , Chemotaxis/physiology , Gastrointestinal Hormones/metabolism , Gastrointestinal Hormones/pharmacology , Granulocyte Colony-Stimulating Factor/metabolism , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neuropeptides/metabolism , Neuropeptides/pharmacology , Neutrophils/drug effects , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Up-Regulation/drug effects , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
Proc Natl Acad Sci U S A ; 106(16): 6742-7, 2009 Apr 21.
Article in English | MEDLINE | ID: mdl-19346489

ABSTRACT

Recent studies suggest that tumor-associated CD11b(+)Gr1(+) myeloid cells contribute to refractoriness to antiangiogenic therapy with an anti-VEGF-A antibody. However, the mechanisms of peripheral mobilization and tumor-homing of CD11b(+)Gr1(+) cells are unclear. Here, we show that, compared with other cytokines [granulocyte-macrophage colony stimulating factor (GM-CSF), stromal derived factor 1alpha, and placenta growth factor], G-CSF and the G-CSF-induced Bv8 protein have preferential expression in refractory tumors. Treatment of refractory tumors with the combination of anti-VEGF and anti-G-CSF (or anti-Bv8) reduced tumor growth compared with anti-VEGF-A monotherapy. Anti-G-CSF treatment dramatically suppressed circulating or tumor-associated CD11b(+)Gr1(+) cells, reduced Bv8 levels, and affected the tumor vasculature. Conversely, G-CSF delivery to animals bearing anti-VEGF sensitive tumors resulted in reduced responsiveness to anti-VEGF-A treatment through induction of Bv8-dependent angiogenesis. We conclude that, at least in the models examined, G-CSF expression by tumor or stromal cells is a determinant of refractoriness to anti-VEGF-A treatment.


Subject(s)
Antibodies, Neoplasm/therapeutic use , Cell Movement/drug effects , Granulocyte Colony-Stimulating Factor/pharmacology , Myeloid Cells/cytology , Neoplasms/drug therapy , Neovascularization, Pathologic/immunology , Vascular Endothelial Growth Factor A/immunology , Animals , Cell Proliferation/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Gastrointestinal Hormones/immunology , Humans , Mice , Mice, Nude , Myeloid Cells/drug effects , Neoplasms/blood supply , Neoplasms/immunology , Neuropeptides/immunology
10.
Nature ; 450(7171): 825-31, 2007 Dec 06.
Article in English | MEDLINE | ID: mdl-18064003

ABSTRACT

Bone-marrow-derived cells facilitate tumour angiogenesis, but the molecular mechanisms of this facilitation are incompletely understood. We have previously shown that the related EG-VEGF and Bv8 proteins, also known as prokineticin 1 (Prok1) and prokineticin 2 (Prok2), promote both tissue-specific angiogenesis and haematopoietic cell mobilization. Unlike EG-VEGF, Bv8 is expressed in the bone marrow. Here we show that implantation of tumour cells in mice resulted in upregulation of Bv8 in CD11b+Gr1+ myeloid cells. We identified granulocyte colony-stimulating factor as a major positive regulator of Bv8 expression. Anti-Bv8 antibodies reduced CD11b+Gr1+ cell mobilization elicited by granulocyte colony-stimulating factor. Adenoviral delivery of Bv8 into tumours was shown to promote angiogenesis. Anti-Bv8 antibodies inhibited growth of several tumours in mice and suppressed angiogenesis. Anti-Bv8 treatment also reduced CD11b+Gr1+ cells, both in peripheral blood and in tumours. The effects of anti-Bv8 antibodies were additive to those of anti-Vegf antibodies or cytotoxic chemotherapy. Thus, Bv8 modulates mobilization of CD11b+Gr1+ cells from the bone marrow during tumour development and also promotes angiogenesis locally.


Subject(s)
Gastrointestinal Hormones/metabolism , Myeloid Cells/metabolism , Neoplasms/blood supply , Neovascularization, Pathologic , Neuropeptides/metabolism , Animals , Antibodies/immunology , Antibodies/pharmacology , Antineoplastic Agents/pharmacology , Cell Division/drug effects , Cell Line, Tumor , Gastrointestinal Hormones/antagonists & inhibitors , Gastrointestinal Hormones/immunology , Gene Expression Regulation/drug effects , Granulocyte Colony-Stimulating Factor/pharmacology , Humans , Mice , Mice, Nude , Myeloid Cells/drug effects , Neoplasm Transplantation , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Neuropeptides/antagonists & inhibitors , Neuropeptides/immunology , Vascular Endothelial Growth Factor A/antagonists & inhibitors
11.
J Clin Invest ; 117(12): 3868-78, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18060034

ABSTRACT

Thymic stromal lymphopoietin (TSLP) potently induces deregulation of Th2 responses, a hallmark feature of allergic inflammatory diseases such as asthma, atopic dermatitis, and allergic rhinitis. However, direct downstream in vivo mediators in the TSLP-induced atopic immune cascade have not been identified. In our current study, we have shown that OX40 ligand (OX40L) is a critical in vivo mediator of TSLP-mediated Th2 responses. Treating mice with OX40L-blocking antibodies substantially inhibited immune responses induced by TSLP in the lung and skin, including Th2 inflammatory cell infiltration, cytokine secretion, and IgE production. OX40L-blocking antibodies also inhibited antigen-driven Th2 inflammation in mouse and nonhuman primate models of asthma. This treatment resulted in both blockade of the OX40-OX40L receptor-ligand interaction and depletion of OX40L-positive cells. The use of a blocking, OX40L-specific mAb thus presents a promising strategy for the treatment of allergic diseases associated with pathologic Th2 immune responses.


Subject(s)
Antibodies, Monoclonal/pharmacology , Cytokines/immunology , Hypersensitivity, Immediate/drug therapy , Membrane Glycoproteins/antagonists & inhibitors , OX40 Ligand/antagonists & inhibitors , Th2 Cells/immunology , Tumor Necrosis Factor Inhibitors , Animals , Antibodies, Monoclonal/therapeutic use , Cells, Cultured , Cricetinae , Disease Models, Animal , Humans , Hypersensitivity, Immediate/immunology , Hypersensitivity, Immediate/pathology , Immunoglobulin E/immunology , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Lung/immunology , Lung/pathology , Macaca mulatta , Membrane Glycoproteins/immunology , Mice , Mice, Inbred BALB C , Mice, Transgenic , OX40 Ligand/immunology , Receptors, OX40/immunology , Skin/immunology , Skin/pathology , Th2 Cells/pathology , Tumor Necrosis Factors/immunology , Thymic Stromal Lymphopoietin
SELECTION OF CITATIONS
SEARCH DETAIL
...