Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
BMC Complement Med Ther ; 23(1): 317, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700261

ABSTRACT

BACKGROUND: Artemisiae Scopariae Herba (ASH) has been widely used as plant medicine in East Asia with remarkable antitumor activity. However, the underlying mechanisms have not been fully elucidated. METHODS: This study aimed to construct a multi-disciplinary approach to screen topoisomerase I (topo I) inhibitors from ASH extract, and explore the antitumor mechanisms. Bioaffinity ultrafiltration-UFLC-ESI-Q/TOF-MS/MS was used to identify chemical constitution of ASH extract as well as the topo I inhibitors, and in silico docking coupled with multiple complex networks was applied to interpret the molecular mechanisms. RESULTS: Crude ASH extract exhibited toxicogenetic and antiproliferative activities on A549 cells. A series of 34 ingredients were identified from the extract, and 6 compounds were screened as potential topo I inhibitors. Docking results showed that the formation of hydrogen bond and π-π stacking contributed most to their binding with topo I. Interrelationships among the 6 compounds, related targets and pathways were analyzed by multiple complex networks model. These networks displayed power-law degree distribution and small-world property. Statistical analysis indicated that isorhamnetin and quercetin were main active ingredients, and that chemical carcinogenesis-reactive oxygen species was the critical pathway. Electrophoretic results showed a therapeutic effect of ASH extract on the conversion of supercoiled DNA to relaxed forms, as well as potential synergistic effect of isorhamnetin and quercetin. CONCLUSIONS: The results improved current understanding of Artemisiae Scopariae Herba on the treatment of tumor. Moreover, the combination of multi-disciplinary methods provided a new strategy for the study of bioactive constituents in medicinal plants.


Subject(s)
Quercetin , Ultrafiltration , Tandem Mass Spectrometry , Topoisomerase I Inhibitors/pharmacology , Plant Extracts/pharmacology
2.
Fitoterapia ; 168: 105525, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37150329

ABSTRACT

Scutellaria baicalensis Georgi (SBG) has been widely used as medical plant in East Asia with remarkable anti-cancer activity. However, the underlying mechanisms are still confused. In this study, an integrated analysis was conducted to screen topoisomerase I (topo I) inhibitors from flavonoids of SBG and investigate the anti-cancer mechanisms, containing bioaffinity ultrafiltration UPLC-ESI-TripleTOF-MS/MS, molecular docking, and multiple complex networks. The SBG extract exhibited notable cytotoxic activity on Hela cells. Five flavonoids were identified as potential topo I inhibitors, including skullcapflavone II, wogonin, chrysin, oroxylin A, and tenaxin I. Their ESI-MS/MS spectra showed that RDA reaction and neutral molecule loss were the main fragment patterns. Docking results demonstrated that π-π interaction and the formation of hydrogen bond contributed most to their binding with topo I. The selected compounds, related target proteins and pathways were integrated into target-based multiple complex networks, which consisted of three subnetworks. Statistical and topological analysis of these networks revealed a series of characteristics, including scale-free property with power-law degree distribution, Poisson degree distribution, and small-world property. Chrysin, wogonin, and oroxylin A exhibited as main active components with much higher degree values. Chemical carcinogenesis-receptor activation (hsa05207) was considered as critical pathway due to remarkable centrality indexes. Additionally, potential synergistic effect of wogonin and chrysin was observed on the conversion of supercoiled DNA to relaxed forms. These results improved current understanding of flavonoid-rich plants on the treatment of cancer. Moreover, the multi-disciplinary approach provided a new strategy for the research of natural products from medical plants.


Subject(s)
Scutellaria baicalensis , Tandem Mass Spectrometry , Humans , Scutellaria baicalensis/chemistry , Tandem Mass Spectrometry/methods , Molecular Docking Simulation , Topoisomerase I Inhibitors/pharmacology , Ultrafiltration , HeLa Cells , Molecular Structure , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/chemistry
3.
Front Neurol ; 13: 1048113, 2022.
Article in English | MEDLINE | ID: mdl-36425795

ABSTRACT

Stroke, a cerebrovascular accident, is prevalent and the second highest cause of death globally across patient populations; it is as a significant cause of morbidity and mortality. Mesenchymal stem cell (MSC) transplantation is emerging as a promising treatment for alleviating neurological deficits, as indicated by a great number of animal and clinical studies. The potential of regulating the immune system is currently being explored as a therapeutic target after ischemic stroke. This study will discuss recent evidence that MSCs can harness the immune system by interacting with immune cells to boost neurologic recovery effectively. Moreover, a notion will be given to MSCs participating in multiple pathological processes, such as increasing cell survival angiogenesis and suppressing cell apoptosis and autophagy in several phases of ischemic stroke, consequently promoting neurological function recovery. We will conclude the review by highlighting the clinical opportunities for MSCs by reviewing the safety, feasibility, and efficacy of MSCs therapy.

4.
IET Syst Biol ; 15(4): 126-135, 2021 06.
Article in English | MEDLINE | ID: mdl-33900023

ABSTRACT

Natural products have been widely used in the treatment of type 2 diabetes (T2D). However, their mechanisms are often obscured due to multi-components and multi-targets. The authors constructed a pathway-based protein-protein association (PPA) network for target proteins of 13 α-glucosidase inhibitors (AGIs) identified from Scutellaria baicalensis Georgi (SBG), designed to explore the underlying mechanisms. This network contained 118 nodes and 1167 connections. An uneven degree distribution and small-world property were observed, characterised by high clustering coefficient and short average path length. The PPA network had an inherent hierarchy as C(k)∼k-0.71 . It also exhibited potential weak disassortative mixing pattern, coupled with a decreased function Knn (k) and negative value of assortativity coefficient. These properties indicated that a few nodes were crucial to the network. PGH2, GNAS, MAPK1, MAPK3, PRKCA, and MAOA were then identified as key targets with the highest degree values and centrality indices. Additionally, a core subnetwork showed that chrysin, 5,8,2'-trihydroxy-7-methoxyflavone, and wogonin were the main active constituents of these AGIs, and that the serotonergic synapse pathway was the critical pathway for SBG against T2D. The application of a pathway-based protein-protein association network provides a novel strategy to explore the mechanisms of natural products on complex diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Scutellaria baicalensis , Diabetes Mellitus, Type 2/drug therapy , Glycoside Hydrolase Inhibitors , Humans
5.
Microbiol Res ; 244: 126652, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33310352

ABSTRACT

Actinobacteria that inhabit lichen symbionts are considered a promising yet previously underexplored source of novel compounds. Here, for the first time, we conducted a comprehensive investigation with regard to strain isolation and identification of lichen-associated actinobacteria from Tibet Plateau, antimicrobial activity screening, biosynthetic genes detection, bioactive metabolites identification and activity prediction. A large number of culturable actinomycetes were isolated from lichens around Qinghai Lake, in Qinghai-Tibet Plateau. Twenty-seven strains with distinct morphological characteristics were preliminarily studied. 16S rRNA gene identification showed that 13 strains were new species. The PCR-screening of specific biosynthetic genes indicated that these 27 isolates had abundant intrinsic biosynthetic potential. The antimicrobial activity experiment screened out some potential biological control antagonistic bacteria. The metabolites of 13 strains of Streptomyces with antibacterial activity were analyzed by LC-HRMS, and further 18 compounds were identified by NMR and / or LC-HRMS. The identified compounds were mainly pyrrolidine and indole derivatives, as well as anthracyclines. Seven compounds were identified with less biological activity, then predicted and evaluated their biological activity. The predicted results showed that compound 2 had excellent inhibitory activity on HIV-1 reverse transcriptase. Overall, the results indicate actinobacteria isolated from unexploited plateau lichen are promising sources of biological active metabolite, which could provide important bioactive compounds as potential antibiotic drugs.


Subject(s)
Actinobacteria/metabolism , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Lichens/microbiology , Actinobacteria/chemistry , Actinobacteria/classification , Actinobacteria/genetics , Anti-Infective Agents/chemistry , Biodiversity , Chromatography, High Pressure Liquid , Lichens/physiology , Mass Spectrometry , Phylogeny , Symbiosis , Tibet
6.
BMC Complement Med Ther ; 20(1): 72, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32143602

ABSTRACT

BACKGROUND: Flavonoids from plant medicines are supposed to be viable alternatives for the treatment of type 2 diabetes (T2D) as less toxicity and side effects. Radix scutellariae (RS) is a widely used traditional medicine in Asia. It has shown great potential in the research of T2D. However, the pharmacological actions remain obscured due to the complex chemical nature of plant medicines. METHODS: In the present study, a systematic method combining ultrafiltration UPLC-TripleTOF-MS/MS and network pharmacology was developed to screen α-glucosidase inhibitors from flavonoids of RS, and explore the underlying mechanism for the treatment of T2D. RESULTS: The n-butanol part of ethanol extract from RS showed a strong α-glucosidase inhibition activity (90.55%, IC50 0.551 mg/mL) against positive control acarbose (90.59%, IC50 1.079 mg/mL). A total of 32 kinds of flavonoids were identified from the extract, and their ESI-MS/MS behaviors were elucidated. Thirteen compounds were screened as α-glucosidase inhibitors, including viscidulin III, 2',3,5,6',7-pentahydroxyflavanone, and so on. A compound-target-pathway (CTP) network was constructed by integrating these α-glucosidase inhibitors, target proteins, and related pathways. This network exhibited an uneven distribution and approximate scale-free property. Chrysin (k = 87), 5,8,2'-trihydroxy-7-methoxyflavone (k = 21) and wogonin (k = 20) were selected as the main active constituents with much higher degree values. A protein-protein interaction (PPI) weighted network was built for target proteins of these α-glucosidase inhibitors and drug targets of T2D. PPARG (Cd = 0.165, Cb = 0.232, Cc = 0.401), ACACB (Cd = 0.155, Cb = 0.184, Cc = 0.318), NFKB1 (Cd = 0.233, Cb = 0.161, Cc = 0.431), and PGH2 (Cd = 0.194, Cb = 0.157, Cc = 0.427) exhibited as key targets with the highest scores of centrality indices. Furthermore, a core subnetwork was extracted from the CTP and PPI weighted network. Type II diabetes mellitus (hsa04930) and PPAR signaling pathway (hsa03320) were confirmed as the critical pathways. CONCLUSIONS: These results improved current understanding of natural flavonoids on the treatment of T2D. The combination of ultrafiltration UPLC-TripleTOF-MS/MS and network pharmacology provides a novel strategy for the research of plant medicines and complex diseases.


Subject(s)
Flavonoids/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Plant Extracts/pharmacology , Scutellaria baicalensis/chemistry , China , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Mass Spectrometry , Plant Extracts/chemistry , Ultrafiltration
7.
Biosystems ; 172: 18-25, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30110599

ABSTRACT

Essential hypertension (EH) is a major risk factor for cardiovascular disease. Despite considerable efforts to elucidate the pathogenesis of EH, there is an imperious need for novel indicators of EH. This study aimed to develop a method to predict potential biomarkers of EH from the point of view of network. A pathway-based gene-gene interaction (GGI) network model was constructed and analyzed, containing 116 nodes and 1272 connections. The nodes represented EH-related genes, and that connections represented their interactions. The network showed a small-world property and uneven degree distribution, suggesting that a few highly interconnected hubs played a vital role in EH. An inherent hierarchy and assortative mixing pattern were also observed in the network. GNAS, GNB3, PF4 and PPBP showed the highest values of degrees and centrality indices, and were chosen as potential biomarkers of EH. A two-mode network model based on the potential biomarkers demonstrated that hemostasis and GPCR ligand binding pathway were key pathways contributing to EH. Results of this study improve our current understanding of the molecular mechanisms driving EH. The selected genes and pathways have the potential to be used in the diagnosis and treatment of EH. Moreover, the combination of pathway analysis and complex network methodology provides a novel strategy for searching new genetic indicators of complex diseases.


Subject(s)
Biomarkers/analysis , Epistasis, Genetic , Essential Hypertension/genetics , Gene Expression Regulation , Gene Regulatory Networks , Models, Theoretical , Signal Transduction , Humans , Multigene Family
8.
BMC Syst Biol ; 11(1): 144, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29282071

ABSTRACT

BACKGROUND: Osmanthus fragrans has been used as folk medicine for thousands of years. The extracts of Osmanthus fragrans flowers were reported to have various bioactivities including free radical scavenging, anti-inflammation, neuroprotection and antitumor effects. However, there is still lack of knowledge about its essential oil. METHODS: In this work, we analyzed the chemical composition of the essential oil from Osmanthus fragrans var. thunbergii by GC-MS. A complex network approach was applied to investigate the interrelationships between the ingredients, target proteins, and related pathways for the essential oil. Statistical characteristics of the networks were further studied to explore the main active ingredients and potential bioactivities of O. fragrans var. thunbergii essential oil. RESULTS: A total of 44 ingredients were selected from the chemical composition of O. fragrans var. thunbergii essential oil, and that 191 potential target proteins together with 70 pathways were collected for these compounds. An ingredient-target-pathway network was constructed based on these data and showed scale-free property as well as power-law degree distribution. Eugenol and geraniol were screened as main active ingredients with much higher degree values. Potential neuroprotective and anti-tumor effect of the essential oil were also found. A core subnetwork was extracted from the ingredient-target-pathway network, and indicated that eugenol and geraniol contributed most to the neuroprotection of this essential oil. Furthermore, a pathway-based protein association network was built and exhibited small-world property. MAPK1 and MAPK3 were considered as key proteins with highest scores of centrality indices, which might play an important role in the anti-tumor effect of the essential oil. CONCLUSIONS: This work predicted the main active ingredients and bioactivities of O. fragrans var. thunbergii essential oil, which would benefit the development and utilization of Osmanthus fragrans flowers. The application of complex network theory was proved to be effective in bioactivities studies of essential oil. Moreover, it provides a novel strategy for exploring the molecular mechanisms of traditional medicines.


Subject(s)
Antineoplastic Agents/chemistry , Neuroprotective Agents/chemistry , Oils, Volatile/chemistry , Oleaceae/chemistry , Antineoplastic Agents/isolation & purification , Computational Biology , Gas Chromatography-Mass Spectrometry , Metabolic Networks and Pathways , Neuroprotective Agents/isolation & purification , Oils, Volatile/pharmacology
9.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1492-1499, 2017 06.
Article in English | MEDLINE | ID: mdl-28433711

ABSTRACT

Voltage-gated sodium channel α-subunit type I (NaV1.1, encoded by SCN1A gene) plays a critical role in the excitability of brain. Downregulation of SCN1A expression is associated with epilepsy, a common neurological disorder characterized by recurrent seizures. Here we reveal a novel role of malate dehydrogenase 2 (MDH2) in the posttranscriptional regulation of SCN1A expression under seizure condition. We identified that MDH2 was an RNA binding protein that could bind two of the four conserved regions in the 3' UTRs of SCN1A. We further showed that knockdown of MDH2 or inactivation of MDH2 activity in HEK-293 cells increased the reporter gene expression through the 3' UTR of SCN1A, and MDH2 overexpression decreased gene expression by affecting mRNA stability. In the hippocampus of seizure mice, the upregulation of MDH2 expression contributed to the decrease of the NaV1.1 levels at posttranscriptional level. In addition, we showed that the H2O2 levels increased in the hippocampus of the seizure mice, and H2O2 could promote the binding of MDH2 to the binding sites of Scn1a gene, whereas ß-mercaptoethanol decreased the binding capability, indicating an important effect of the seizure-induced oxidation on the MDH2-mediated downregulation of Scn1a expression. Taken together, these data suggest that MDH2, functioning as an RNA-binding protein, is involved in the posttranscriptional downregulation of SCN1A expression under seizure condition.


Subject(s)
3' Untranslated Regions , Down-Regulation , Malate Dehydrogenase/metabolism , NAV1.1 Voltage-Gated Sodium Channel/biosynthesis , RNA-Binding Proteins/metabolism , Seizures/metabolism , Animals , HEK293 Cells , Hippocampus/metabolism , Hippocampus/pathology , Humans , Malate Dehydrogenase/genetics , Mice , NAV1.1 Voltage-Gated Sodium Channel/genetics , RNA-Binding Proteins/genetics , Seizures/genetics , Seizures/pathology
10.
Mol Neurobiol ; 54(4): 2831-2842, 2017 05.
Article in English | MEDLINE | ID: mdl-27013471

ABSTRACT

Upregulation of sodium channel SCN3A expression in epileptic tissues is known to contribute to enhancing neuronal excitability and the development of epilepsy. Therefore, certain strategies to reduce SCN3A expression may be helpful for seizure control. Here, we reveal a novel role of valproate (VPA) in the epigenetic downregulation of Scn3a expression. We found that VPA, instead of carbamazepine (CBZ) and lamotrigine (LTG), could significantly downregulate Scn3a expression in mouse Neuro-2a cells. Luciferase assays and CpG methylation analyses showed that VPA induced the methylation at the -39C site in Scn3a promoter which decreased the promoter activity. We further showed that VPA downregulated the expression of methyl-CpG-binding domain protein 2 (MBD2) at the posttranscriptional level and knockdown of MBD2 increased Scn3a expression. In addition, we found that VPA induced the expression of fat mass and obesity-associated (FTO) protein and FTO knockdown abolished the repressive effects of VPA on MBD2 and Nav1.3 expressions. Furthermore, VPA, instead of other two anticonvulsant drugs, induced the expressions of Scn3a and Mbd2 and reduced Fto expression in the hippocampus of VPA-treated seizure mice. Taken together, this study suggests an epigenetic pathway for the VPA-induced downregulation of Scn3a expression, which provides a possible role of this pathway in the anticonvulsant action of VPA.


Subject(s)
Anticonvulsants/pharmacology , Down-Regulation/genetics , Epigenesis, Genetic/drug effects , NAV1.3 Voltage-Gated Sodium Channel/genetics , Valproic Acid/pharmacology , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Anticonvulsants/therapeutic use , Cell Line, Tumor , CpG Islands/genetics , DNA Methylation/drug effects , DNA Methylation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Down-Regulation/drug effects , Genes, Reporter , Hippocampus/metabolism , Male , Mice , Models, Biological , NAV1.3 Voltage-Gated Sodium Channel/metabolism , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seizures/drug therapy , Seizures/genetics , Transcription, Genetic/drug effects , Valproic Acid/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...