Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 269, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507095

ABSTRACT

Microalgae are rich in fatty acids, proteins, and other nutrients, which have gained the general attention of researchers all over the world. For the development of Chlorella vulgaris in food and feed industry, this study was conducted to investigate the differences in C. vulgaris' growth and nutritional components under different culture conditions (autotrophic, heterotrophic, photoheterotrophic) and the internal factors through cell counting in combination with transcriptome and nutrient analyses. The results showed that, under the photoheterotrophic condition, Chlorella's growth and the contents of lipid and protein were significantly higher than that under the heterotrophic condition, and the moisture content was lower than that under the heterotrophic condition. The saturated fatty acid content under the photoheterotrophic condition was the lowest, while the polyunsaturated fatty acid content was significantly higher than those under the other two conditions. There were 46,583 differentially expressed genes (DEGs), including 33,039 up-regulated DEGs (70.93%) and 13,544 down-regulated DEGs (29.07%), under the photoheterotrophic condition in comparison with the autotrophic condition. The fold change between the two conditions of samples of up-regulated genes was higher than that of the down-regulated genes. The KEGG enrichment showed that the up-regulated DEGs in the photoheterotrophic condition were significantly enriched in 5 pathways, including protein processing in endoplasmic reticulum pathway, photosynthesis pathway, photosynthesis-antenna protein pathway, endocytosis pathway, and phosphonate and phosphinate metabolism pathway. DEGs related to fatty acid metabolic pathways were significantly enriched in the fatty acid biosynthesis pathway and the biosynthesis of unsaturated fatty acid pathway. The qPCR analysis showed that the expression pattern of the selected genes was consistent with that of transcriptome analysis. The results of this study lay a theoretical foundation for the large-scale production of Chlorella and its application in food, feed, and biodiesel. KEY POINTS: • Nutrient levels under photoheterotrophic condition were higher than other conditions. • Six important pathways were discovered that affect changes in nutritional composition. • Explored genes encode important enzymes in the differential metabolic pathways.


Subject(s)
Chlorella vulgaris , Microalgae , Fatty Acids/metabolism , Photosynthesis , Metabolic Networks and Pathways , Nutrients/analysis , Biomass , Microalgae/metabolism , Biofuels/analysis
2.
Fish Shellfish Immunol ; 144: 109233, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984614

ABSTRACT

This study was conducted to ascertain the effect of dietary Zn on growth and health status of juvenile largemouth bass (Micropterus salmoides). Six experimental diets with Zn level of 50.17, 56.74, 73.34, 86.03, 123.94, and 209.20 mg/kg, respectively were compounded using complex amino acid-chelated zinc, and were fed to juvenile fish (5.50 ± 0.10 g) for 70 d. The specific growth rate (SGR) varied with dietary Zn level in a quadratic model and peaked at the 73.34 mg/kg group, while the feeding rate exhibited an opposite trend (P < 0.05). The condition factor, hepatosomatic index and mesenteric fat index all exhibited a tendency similar with SGR (P < 0.05). Dietary Zn level affected serum total proteins, urea, triglycerides, and glucose (P < 0.05). Serum Zn and copper levels linearly increased with dietary Zn level, while serum iron and manganese showed the opposite trend. Serum superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) increased with dietary Zn level and reached a plateau at 86.03 mg/kg. Serum complement component 3 (C3), IgM, and lysozyme also were enhanced by 73.34 mg/kg Zn. Body protein content increased with zinc level up to 73.34 mg/kg, and then remained steadily. As dietary Zn level increased, hepatic lipid level increased and then reached a plateau at 86.03 mg/kg group, while glycogen increased linearly. Moreover, gene expression related to lipid and glycogen metabolism from liver transcriptome further explained the liver lipid and glycogen variations. To conclude, a dietary Zn requirement of 76.99 mg/kg was suggested for juvenile largemouth bass to improve growth, antioxidant capacity, and immune status.


Subject(s)
Antioxidants , Bass , Animals , Antioxidants/metabolism , Dietary Supplements , Diet/veterinary , Liver/metabolism , Triglycerides/metabolism , Glycogen/metabolism , Glycogen/pharmacology , Glucose/metabolism , Zinc/pharmacology
3.
Fish Physiol Biochem ; 49(5): 1043-1061, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37782384

ABSTRACT

Skeletal muscle myoblastic cell lines can provide a valuable new in vitro model for the exploration of the mechanisms that control skeletal muscle development and its associated molecular regulation. In this study, the skeletal muscle tissues of grass carp were digested with trypsin and collagenase I to obtain the primary myoblast cell culture. Myoblast cells were obtained by differential adherence purification and further analyzed by cryopreservation and resuscitation, chromosome analysis, immunohistochemistry, and immunofluorescence. A continuous grass carp myoblast cell line (named CIM) was established from grass carp (Ctenopharyngodon idellus) muscle and has been subcultured > 100 passages in a year and more. The CIM cells revived at 79.78-95.06% viability after 1-6 months of cryopreservation, and shared a population doubling time of 27.24 h. The number of modal chromosomes of CIM cells was 48, and the mitochondrial 12S rRNA sequence of the CIM cell line shared 99% identity with those of grass carp registered in GenBank. No microorganisms (bacteria, fungi, or mycoplasma) were detected during the whole study. The cell type of CIM cells was proven to be myoblast by immunohistochemistry of specific myogenic protein markers, including CD34, desmin, MyoD, and MyHC, as well as relative expression of key genes. And the myogenic rate and fusion index of this cell line after 10 days of induced differentiation were 8.96 ~ 9.42% and 3-24%, respectively. The telomerase activity and transfection efficiency of CIM cell line were 0.027 IU/mgprot and 23 ~ 24%, respectively. These results suggest that a myoblast cell line named CIM with normal biological function has been successfully established, which may provide a valuable tool for related in vitro studies.


Subject(s)
Carps , Myoblasts, Skeletal , Animals , Amino Acid Sequence , Cell Differentiation , Cell Line
4.
Metabolites ; 14(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38248825

ABSTRACT

Aquaculture provides a significant amount of high-quality protein for human consumption and is one of the most efficient protein production industries [...].

5.
Metabolites ; 12(11)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36355129

ABSTRACT

The aim of this study was to evaluate the nutritional value of cottonseed protein concentrate (CPC) as a single dietary protein source and the optimal protein level for grass carp (Ctenopharyngodon idellus). An 8-week feeding trial was conducted by feeding juvenile grass carp (initial body weight: 4.68 ± 0.01 g) with six experimental diets containing graded levels of protein provided by CPC. The results showed that the optimal CPC level (CPC4) improved the growth performance and health status of grass carp. The optimal dietary protein level was estimated to be 38.61 and 38.66% based on specific growth rate (SGR) and feed efficiency (FE), respectively. The CPC4 group significantly increased the total antioxidant capacity (T-AOC) content and glutathione peroxidase (GSH-Px) activity in the hepatopancreas (p < 0.05). In addition, the CPC4 group increased the muscle T-AOC and glutathione (GSH) content and improved muscle hardness, and the gene expression of MRFs, fgf6a, myhc-7, myhc-1, myhc-4, igf-II, and tor was upregulated while mstn gene expression was downregulated (p < 0.05). Correlation analysis revealed that the optimal dietary CPC level promoted grass carp growth, health, and flesh quality by regulating the relative abundance of intestinal microbes. Furthermore, CPC6 upregulated the ko00480 (Glutathione metabolism) and ko00620 (Pyruvate metabolism) pathways compared to CPC1 (p < 0.05), possibly indicating that low dietary CPC levels adversely affected amino acid metabolism in the intestinal microbiota of grass carp, while a high level of CPC will meet the metabolic needs of the body by increasing the utilization of energy.

6.
Front Nutr ; 9: 832651, 2022.
Article in English | MEDLINE | ID: mdl-35571945

ABSTRACT

The aim of this study was to estimate the possible synergetic effects of the two levels of dietary dried distillers grains with solubles (DDGS) from different sources (US-imported and native) on the growth, health status, muscle texture, and muscle growth-related gene expression of juvenile grass carp. Four treatments of fish were fed with 4 isonitrogenous diets, namely, native DDGS20, native DDGS30, US-imported DDGS20, and US-imported DDGS30 for 60 days. The US-imported DDGS30 group showed the better growth and feed efficiency. Additionally, we observed a significant increase in hepatopancreatic total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in native DDGS groups. Moreover, raw muscle collagen increases considerably in the US-imported DDGS30 compared with the native DDGS30 group. In comparison with the native DDGS groups, the US-imported DDGS groups showed significantly decrease in all textural properties and fiber density, while increased fiber diameter. Dietary native DDGS inclusion significantly showed the upregulation of myog, myhc, and fgf6a expression in muscle, while the downregulation of the expression of myod and myf5. Overall, US-imported DDGS30 had a beneficial influence on growth via regulating genes involved in myogenesis and hypertrophy, the formation of collagen, but had negative impacts on antioxidant capacity and cooked muscle texture.

7.
Front Nutr ; 9: 833924, 2022.
Article in English | MEDLINE | ID: mdl-35419399

ABSTRACT

The aim of this study was to investigate the effect of dietary protein level (soybean meal) on growth performance, flesh quality of grass carp, and the related molecular mechanisms. The results showed that appropriate dietary protein levels improved the growth performance, hardness, and pH of muscle while decreasing muscle crude lipid content and cooking loss and altering the antioxidant capacity and metabolic enzymes activities. In addition, appropriate dietary protein promoted the gene expression of myhc-1, myhc-4, myf5, myod, myog, and fgf6a, whereas inhibited that of myhc-7, myhc-2, mrf4, and mstn. Transcriptome profiling of muscle revealed that the flesh quality-specific differences were related to tight junctions and intramuscular fat (IMF) accumulation. GSEA showed that fatty acid metabolism and oxidative phosphorylation were downregulated in SM5 compared with SM1. To conclude, appropriate protein levels improved the growth and flesh quality by regulating muscle antioxidant capacity and gene expression of myhcs and fat metabolism-related signaling molecules.

8.
Psychol Rep ; 125(6): 3209-3223, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34338074

ABSTRACT

The 5-item Gratitude Questionnaire (GQ-5) is one of the most commonly used instruments to measure dispositional gratitude in adolescents. The purpose of this study was to verify the longitudinal measurement invariance (LMI) and gender measurement invariance (GMI) of the GQ-5 that was administered to an adolescent sample twice over the course of 18 months (N = 669). Single-group confirmatory factor analysis (CFA) was adopted to examine the LMI and multiple-group CFA was conducted to assess the GMI. The results showed that the GQ-5 had strong invariance (i.e., equality of factor patterns, loadings, and intercepts) across time and gender. Validation of latent factor mean differences showed that females had higher gratitude scores than males. In addition, the GQ-5 exhibited good internal consistency indices across time and a moderate stability coefficient was also found across an 18-month time interval in adolescents. In summary, our study showed that LMI and GMI of the GQ-5 are satisfactory and the GQ-5 is a reliable instrument for measuring gratitude in adolescents.


Subject(s)
Psychometrics , Adolescent , China , Factor Analysis, Statistical , Female , Humans , Male , Reproducibility of Results , Surveys and Questionnaires
9.
Fish Physiol Biochem ; 47(5): 1489-1505, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34331171

ABSTRACT

Grass carp (Ctenopharyngodon idellus) is one of the most essential fishing species in China. The bait for this fish is rapidly developing. However, the study on the attractants in the bait for this fish lacks. This study was designed to systematically investigate the effects of 16 kinds of test substances on the perspective of behaviour and physiology of grass carp by using different kinds of methods, including behavioral tests (maze test and biting-balls test) and electro-olfactogram (EOG). Our experiment's idea is mainly to imitate: in addition to vision, fish in nature also use smell to find food and finally swallow under the action of olfaction, taste, and other sensory systems. Firstly, the behavioral maze test was used to screen the attractive or suppressive effect of 16 test substances on grass carp, and the electronic olfactory recording method was used to further evaluate the olfactory response of grass carp to the eight stimuli selected from the maze test. Then, the best concentrations of these eight stimuli and their combination were investigated by the biting-balls test to compound a formula with the strongest appetite for grass carp. The results of behavioral maze test showed that dimethyl-ß-propiothetin (DMPT), dimethylthetin (DMT), glycine, taurine, L-glutamic, L-alanine, L-proline, and L-arginine have different degrees of usefulness in attracting grass carp. The electro-olfactogram recoding showed that the EOG response of grass carp to the stimuli is a transient biphasic potential change and all of the eight stimuli could induce the EOG response of grass carp. The biting-balls test showed that glycine, L-glutamic, and L-arginine at 10-2 mol/L had significant feeding stimulation and DMT at 10-1 mol/L had significant feeding stimulation than the other groups. Finally, formula 9 composed of DMT, glycine, L-glutamic acid, and L-arginine has the greatest attraction for grass carp. The results of this study verified the attractive effect of some amino acids and other chemicals on grass carp fishing, and would provide support for the production of specific grass carp attractants.


Subject(s)
Amino Acids/metabolism , Carps , Animals , Arginine , Carps/physiology , Glycine , Hunting
10.
Theriogenology ; 162: 59-66, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33444917

ABSTRACT

Ovary development of Chinese sturgeon (Acipenser sinensis) in controlled breeding has been reported to respond to dietary lipid levels. However, the corresponding molecular regulatory mechanism about ovary development of Chinese sturgeon is still unclear. To elucidate the molecular mechanism of vitellogenic deposition and hydrolysis, six key genes, namely, vtgr (vitellogenin receptor), atp6v1c1 (Vacuolar H+-ATPase subunit c1), atp6v1h (Vacuolar H+-ATPase subunit h), ctsb (cathepsin B), ctsd (cathepsin D) and ctsl (cathepsin L) involved in vitellogenic deposition and hydrolysis of Chinese sturgeon were cloned and characterized, and their spatio-temporal mRNA expression profiles as well as transcriptional responses to dietary lipid level were investigated. The full-length cDNA sequences of these six genes showed similar domain structure to their respective orthologous genes from other vertebrates. Tissue-specific expression patterns of these genes were observed in ovary, liver, muscle, spleen, brain, gill, intestine, heart, stomach and kidney. Ovarian expression level of vtgr was the highest in stage II, and ctsl expression was the highest in stage IV, while the mRNA expressions of other 4 genes were the highest in stage III. The increase of dietary lipid level promoted ovary development and elevated the expressions of vtgr, atp6v1c1, atp6v1h, ctsb and ctsd in the ovary. The results of the present study indicated that these genes are crucial for vitellogenic deposition, and provided a preliminary understanding on the molecular regulation of vitellogenic deposition and hydrolysis during ovary development of Chinese sturgeon.


Subject(s)
Fishes , Ovary , Animals , China , Female , Fishes/genetics , Hydrolysis , Sex Differentiation
11.
Front Physiol ; 11: 584782, 2020.
Article in English | MEDLINE | ID: mdl-33343387

ABSTRACT

Compared with wild grass carp (Ctenopharyngodon idellus), intensively cultured fish displayed disordered lipid metabolism, showing excess lipid deposition in the hepatopancreas and muscle. Lotus leaf prevents fat accumulation in humans and may have similar effects on fish. This study explored the regulatory mechanisms by which the dietary addition of an alcoholic extract of lotus leaf (AELL) reduced lipid deposition in the hepatopancreas and muscle of juvenile grass carp. The fish (average initial weight: 34.00 ± 0.40 g) were fed four experimental diets containing different AELL levels (0, 0.07, 0.14, and 0.21%) for 8 weeks. Serum components, lipid droplet size, triacylglycerol (TAG) content, enzymatic activities, and mRNA levels of genes related to lipid metabolism in the hepatopancreas and muscle were analyzed. The results show that dietary AELL supplementation significantly reduced the TAG content and lipid droplet area in the histological sections as well as the fatty acid synthase (FAS) activity in both the hepatopancreas and muscle but enhanced the activities of lipoprotein lipase (LPL) and carnitine palmitoyltransferase I (CPT1) in both tissues. In addition, dietary AELL supplementation decreased the mRNA expression of genes involved in fatty acid uptake (cd36, fatp1/fatp4/fatp6, fabp10/fabp11, acsl1/acsl4) and de novo lipid synthesis (pgd, g6pd, and fasn) as well as the transcription factors pparg and srebf1 in the hepatopancreas and muscle but increased the mRNA levels of genes relating to lipid catabolism (cpt1a, lipe, pnpla2, lpl), lipid transportation (apob), and the transcription factor ppara in both tissues. In conclusion, dietary AELL supplementation reduced lipid accumulation in the hepatopancreas and muscle by affecting the gene expression of proteins with known effects on lipid metabolism in juvenile grass carp.

12.
J Exp Zool B Mol Dev Evol ; 334(5): 280-293, 2020 07.
Article in English | MEDLINE | ID: mdl-32483872

ABSTRACT

Chinese sturgeon (Acipenser sinensis) with an evolutionary history of over 200 million years, has a long lifespan, and an extremely late and asynchronous sexual maturation (8-18 years for males and 14-26 years for females), resulting in the difficulty of mature adult culture. However, little is known about the regulatory mechanisms of the transition among ovarian maturation stages in the Chinese sturgeon. We performed de novo transcriptome sequencing of the Chinese sturgeon at different ovarian maturation stages (FII, FIII, and FIV). The number of differentially expressed genes (DEGs) between FII and FIII/FIV (33,517/34,217) was more than that between FIII and FIV (22,123), suggesting that the transition from FII to FIII/FIV is more important than that from FIII to FIV for ovarian maturation. The number of upregulated genes was more than that of the downregulated genes, suggesting that increased gene expression was involved in the transition from FII to FIII/FIV. The representative pathways of DEGs were steroid biosynthesis, fatty acid biosynthesis, fatty acid elongation, glycerolipid metabolism, biosynthesis of unsaturated fatty acid, and α-linolenic acid metabolism. The differential expressions from the transcriptome sequencing were validated with real-time reverse-transcription polymerase chain reaction. We also found 13 genes in sexual development, female sex determination, gonadal development, ovarian maturation, ovarian follicle development, and oocyte development pathways, which were differently expressed among fish at FII, FIII, and FIV. We suggest that enhanced synthesis of steroid, unsaturated fatty acid, and α-linolenic acid may contribute to ovarian maturation of the Chinese sturgeon. These potential determinants provide a glimpse of the molecular architecture of ovary development in sturgeons.


Subject(s)
Fishes/metabolism , Gene Expression Regulation, Developmental/physiology , Ovary/growth & development , Ovary/metabolism , Animals , Female , Transcriptome
13.
PLoS One ; 15(6): e0235043, 2020.
Article in English | MEDLINE | ID: mdl-32589675

ABSTRACT

Captive breeding has been explored in Chinese sturgeon (Acipenser sinensis) for species protection. However, gonad development from stage II to IV of cultured female broodstocks is a handicap. This study aimed to explore the physiological and metabolic changes during the ovary development from stage II to IV of female Chinese sturgeon and the related energy regulatory mechanism, which may be helpful to address the developmental obstacle. The results showed that the oocyte volume increased and the muscle lipid content decreased with the ovary development. Ovarian RNA levels of most genes related to lipid and amino acid metabolism were higher in stage II and III than in stage IV. Serum contents of differential metabolites in arginine, cysteine, methionine, purine, tyrosine, lysine, valine, leucine and isoleucine metabolism pathways peaked at stage III, while the contents of sarcosine, alanine and histidine, as well as most oxylipins derived from fatty acids peaked at stage IV. These results indicated the more active amino acids, lipid metabolism, and energy dynamics of fish body in response to the high energy input of ovary developing from stage II to III, and the importance of alanine, histidine, taurine, folate and oxylipins for fish with ovary at stage IV.


Subject(s)
Amino Acids/metabolism , Fatty Acids/metabolism , Fishes/physiology , Metabolomics/methods , Oogenesis/physiology , Ovary/metabolism , Animals , China , Endangered Species , Female , Gene Expression/physiology
14.
Br J Nutr ; 122(11): 1230-1241, 2019 12 14.
Article in English | MEDLINE | ID: mdl-31782378

ABSTRACT

Chinese sturgeon (Acipenser sinensis) is an endangered species, listed as a grade I protected animal in China. The females rarely successfully develop their gonads from stage II to III in captivity, which handicaps the propagation of cultured Chinese sturgeon. The present study aimed to understand the effects of dietary lipid level on the ovarian development and the related regulation mechanism in female Chinese sturgeon. A 24-month feeding trial was conducted with 10-year-old Chinese sturgeons with ovaries at the developmental stage II, with three experimental diets containing 10, 14 and 18 % lipids. Ovary, muscle and serum samples were collected at four time points (6, 12, 18 and 24 months) for further analyses. Serum metabolomics and ovary transcriptomics analyses were conducted at 18 months. Results showed that only the 18 % lipid diet promoted ovary development to stage IV. Oocytes at stage II in this group also exhibited higher diameter and more lipid droplets. Serum TAG content in the 18 % group was significantly higher than in 10 and 14 % groups (both at 12 and 18 months). Oestradiol content in the 14 % group was significantly higher than in 10 and 18 % groups, except at 24 months. Metabolomic and transcriptomic results indirectly indicated that 14 % of dietary lipids benefited steroid hormone synthesis, while 18 % lipid facilitated arachidonic acid metabolism, cholesterol biosynthesis and vitellogenesis, although serum cholesterol content did not vary with dietary lipid level. In conclusion, 18 % dietary lipid is the optimal level for improving gonad development of female Chinese sturgeon.


Subject(s)
Arachidonic Acid/metabolism , Cholesterol/biosynthesis , Dietary Fats/administration & dosage , Fishes/metabolism , Gonadal Steroid Hormones/biosynthesis , Ovary/growth & development , Animals , Aquaculture , China , Diet , Endangered Species , Estradiol/blood , Female , Gene Expression , Gene Expression Profiling/veterinary , Metabolomics , Muscles/anatomy & histology , Ovary/chemistry , Triglycerides/blood
15.
Fish Shellfish Immunol ; 93: 1-7, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31315061

ABSTRACT

Grass carp (Ctenopharyngodon idellus) is one of the most important aquaculture fish in China. This study tried to explore the effects of dietary alcoholic extract of lotus leaf (AELL) addition on the growth performance and health status of grass carp by feeding juvenile fish (average weight: 34 ±â€¯1 g) with four different experimental diets: control, AELL7, AELL14 and AELL21 for 8 weeks. At the end of the growth trial, the highest values of final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR) and feed intake (FI) all occurred in group AELL14 (P < 0.05). Compared to control, the crude lipid content of whole-body and the serum malondialdehyde (MDA) in the three experimental groups decreased, while the serum superoxide dismutase (SOD), glutathione peroxidase (GSH) and total antioxidant capacity (T-AOC) values almost all increased in the three experimental groups. The highest serum immunoglobulin M (IgM) concentration occurred in AELL14 group (P < 0.05). In AELL14 and AELL21 groups, both the serum complement 3 (C3) concentration and lysozyme (LYS) activity were significantly higher, whereas the final cumulative mortality in challenge test was significantly lower, when compared to those in control group (P < 0.05). The AELL exerted dose-dependent beneficial effects on grass carp health through up-regulating related gene expressions and enzyme activity. In conclusion, the optimal dietary AELL level is 0.14% for juvenile grass carp.


Subject(s)
Carps/immunology , Nelumbo/chemistry , Plant Extracts/metabolism , Animal Feed/analysis , Animals , Blood Chemical Analysis/veterinary , Carps/growth & development , Carps/metabolism , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Female , Male , Plant Extracts/administration & dosage , Random Allocation
16.
Fish Physiol Biochem ; 45(5): 1649-1662, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31140072

ABSTRACT

The present study was conducted to investigate the regulative function of FGF6 in the muscle growth of grass carp (Ctenopharyngodon idellus) by the bioinformatics analysis and expression pattern analyses of FGF6 genes in different developmental stages and tissues, as well as the correlation analysis between muscle growth and FGF6 expression after fish were fed with different levels of dietary lotus leaf flavonoids (LLF) (0, 0.03%, 0.06%, 0.09%). Results showed that the FGF6a and FGF6b genes are two homologs of the FGF6 family, encoding 205 and 209 amino acids, respectively. Alignment of amino acid sequences and phylogenetic analysis demonstrated that FGF6a and FGF6b are highly conserved with other vertebrates. Quantitative RT-PCR analysis showed both FGF6a and FGF6b expressions were high in brain and muscle but low in other examined tissues. During embryonic development, FGF6a and FGF6b mRNA expressions could be detected as early as at fertilized egg stage and displayed the highest value at cleavage stage. Dietary LLF affected the gene expression of FGF6 in white muscle. The relative expression of FGF6a of 0.06% LLF group was significantly higher than that of 0.09% LLF group, while FGF6b expression of 0.06% LLF group was higher than those of other groups (P < 0.05). The muscle fiber diameter was significantly higher in 0.06% LLF group in comparison with other groups, while the fiber density in this group was lower (P < 0.05). Both FGF6a and FGF6b expressions were positively correlated with fiber diameter but negatively correlated with fiber density. These results collectively suggest that FGF6a and FGF6b play an important role in muscle growth regulation in grass carp.


Subject(s)
Carps/growth & development , Carps/metabolism , Fibroblast Growth Factor 6/metabolism , Gene Expression Regulation, Developmental/physiology , Muscle, Skeletal/growth & development , Amino Acid Sequence , Animals , Carps/embryology , Fibroblast Growth Factor 6/genetics , Flavonoids/chemistry , Flavonoids/pharmacology , Gene Expression Regulation, Developmental/drug effects , Larva , Lotus/chemistry , Models, Molecular , Phylogeny , Plant Extracts/chemistry , Plant Leaves/chemistry , Protein Conformation , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Article in English | MEDLINE | ID: mdl-30978471

ABSTRACT

Fish selectively reserves docosahexenoic acid (DHA) in ovary during gonadal development. However, no direct proof supports this. The present study tried to elucidate the DHA migration to the developing ovary of female zebrafish. An injection study of 13C-labeled DHA for DHA tracing was conducted, and another injection study of unlabeled-DHA (DHA-injected group) and BSA-saline (control group) was conducted for lipid and DHA content detection, related gene expression analyses, and histological observation. The results showed that the rapid absorption of lipid occurred at stage III with a constant accumulation of DHA in the ovary. The proportion of oocytes at stage III on day 7 and 21, and at stage IV on day 3 and 21 in DHA-injected group was significantly higher than that in control group, respectively (P < .05). The injected 13C-labeled DHA was accumulated twice in the ovary respectively on day 1 and 7, and remained at a relatively high level. In DHA-injected group, the fatp4 expression was significantly higher in ovary on day 3, 5 and 7 (P < .05), and significantly lower (P < .05) in liver on day 5, 14 and in muscle on day 1, 5 and 7 than that in control group. In conclusion, the present study suggested a migration of DHA from the liver and muscle to the gonads when necessary.


Subject(s)
Docosahexaenoic Acids/metabolism , Embryonic Development/genetics , Zebrafish/growth & development , Zebrafish/metabolism , Animals , Female , Gonads/growth & development , Gonads/metabolism , Male , Oocytes/growth & development , Oocytes/metabolism , Ovary/growth & development , Ovary/metabolism , Sex Differentiation/genetics , Testis/growth & development , Testis/metabolism
18.
Fish Physiol Biochem ; 45(2): 539-549, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30729411

ABSTRACT

Dietary arginine (Arg) could improve the intestinal structure and absorption of grass carp (Ctenopharyngodon idellus); however, the mechanism of Arg on intestinal morphology improvement was unclear. The present study aimed to explain the possible mechanism of the positive effect of Arg on intestinal epithelial cells of grass carp. An in vitro study was conducted through a primary culture model to assess the growth, cell viability, mRNA expressions of TOR signal pathway, and tight junction proteins of enterocytes after culture in the medium with 6 levels of Arg (0, 0.1, 0.2, 0.5, 1.0, and 2.0 mmol/L). The results showed that 0.5 mmol/L Arg improved the cell number and decreased the lactate dehydrogenase and creatine kinase activities in culture medium (P < 0.05). The alkaline phosphatase activity in cell lysis buffer was depressed by 1 and 2 mmol/L Arg (P < 0.05). The nitric oxide (NO) content showed an increasing trend with the Arg content (P < 0.05), whereas the NO synthase activity showed an opposite trend to NO. TOR expression was higher in 0.2 and 0.5 mmol/L groups, whereas S6K1 expression in 1.0 mmol/L and 2.0 mmol/L groups were lower (P < 0.05). The mRNA expressions of occludin, claudin 3, and claudin c in 0.5 mmol/L group were the highest, while ZO-1 and claudin b expressions were higher in 0.2 and 0.5 mmol/L groups (P < 0.05). This study indicated that Arg enhanced the growth and integrity of intestinal epithelial cells of grass carp through upregulation of mRNA expression of TOR signal pathway and tight junction proteins at an optimal Arg content of 0.2-0.5 mmol/L.


Subject(s)
Arginine/pharmacology , Carps/physiology , Enterocytes/drug effects , TOR Serine-Threonine Kinases/metabolism , Tight Junction Proteins/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Arginine/administration & dosage , Cells, Cultured , Diet/veterinary , Dose-Response Relationship, Drug , Enterocytes/physiology , Gene Expression Regulation/drug effects , Signal Transduction , Tight Junction Proteins/genetics
19.
Fish Physiol Biochem ; 40(1): 93-104, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23817987

ABSTRACT

The solute carrier family 7A, member 7 gene encodes the light chain- y⁺L amino acid transporter-1 (y⁺LAT1) of the heterodimeric carrier responsible for cationic amino acid (CAA) transport across the basolateral membranes of epithelial cells in intestine and kidney. Rising attention has been given to y⁺LAT1 involved in CAA metabolic pathways and growth control. The molecular characterization and function analysis of y⁺LAT1 in grass carp (Ctenopharyngodon idellus) is currently unknown. In the present study, full-length cDNA (2,688 bp), which encodes y⁺LAT1 and contains a 5'-untranslated region (319 bp), an open reading frame (1,506 bp) and a 3'-untranslated region (863 bp), has been cloned from grass carp. Amino acid sequence of grass carp y⁺LAT1 contains 11 transmembrane domains and shows 95 %, 80 % and 75 % sequence similarity to zebra fish, amphibian and mammalian y⁺LAT1, respectively. The tissue distribution and expression regulation by fasting of y⁺LAT1 mRNA were analyzed using real-time PCR. Our results showed that y⁺LAT1 mRNA was highly expressed in midgut, foregut and spleen while weakly expressed in hindgut, kidney, gill, brain, heart, liver and muscle. Nutritional status significantly influenced y⁺LAT1 mRNA expression in fish tissues, such as down-regulation of y⁺LAT1 mRNA expression after fasting (14 days).


Subject(s)
Amino Acid Transport System y+L/metabolism , Carps/metabolism , Fish Proteins/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Amino Acid Sequence , Amino Acid Transport System y+L/chemistry , Amino Acid Transport System y+L/genetics , Animals , Base Sequence , Carps/genetics , Fasting/metabolism , Fish Proteins/chemistry , Fish Proteins/genetics , Large Neutral Amino Acid-Transporter 1/chemistry , Large Neutral Amino Acid-Transporter 1/genetics , Molecular Sequence Data , Phylogeny , Random Allocation , Real-Time Polymerase Chain Reaction , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...