Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Food Microbiol ; 350: 109242, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34044228

ABSTRACT

Lactic acid fermentation is a traditional process to preserve foods and to modify their organoleptic properties. This process is generally conducted in a spontaneous way, allowing indigenous lactic acid bacteria (LAB) of the matrix and of the environment to compete and grow. The aim of this study was to better characterise LAB strains ability to modify aroma profiles in fruit and vegetable matrices, by focusing on two key enzymatic activities: ß-glucosidase and alcohol dehydrogenase (ADH). Firstly, 200 LAB isolated from Cambodian and Vietnamese fermented foods were screened for their ß-glucosidase activity and duplicate isolates identified through RAPD-PCR analysis were discarded. Thereby, 40 strains were found positive for ß-glucosidase using p-nitrophenyl-ß-D-glucopyranoside as substrate. Among them, 14 displayed an activity greater than 10 nmol/min/mg dry cell. Thirteen were identified as Lactiplantibacillus (L.) plantarum and one as L. pentosus. Secondly, four strains of different phenotypes for ß-glucosidase activity were tested for ADH activity. The highest reduction ability for hexanal and (E)-2-hexenal was obtained for Limosilactobacillus (L.) fermentum V013-1A for which no ß-glucosidase activity was detectable. The three other strains (L. plantarum C022-2B, C022-3B, and V0023-4B2) exhibited a lower reduction ability and only for hexanal. Thirdly, mashed tomatoes were fermented with these four strains individually to evaluate their ability to release volatile compounds from the tomato precursors. Fifty-eight volatile compounds were identified and quantified by HS-SPME/GC-MS. Untreated tomatoes were rich in aldehydes. The tomatoes fermented with L. plantarum strains were rich in ketones whereas those with L. fermentum were rich in alcohols. However, for the generation of terpenoids that provide flower and fruit flavours, our screening of ß-glucosidase activity was not able to explain the differences among the strains. For ADH activity, L. fermentum exhibited a high activity in fermentation as most of the target aldehydes and ketones disappeared and were replaced by their corresponding alcohols. The L. plantarum strains exhibited a lower activity but with an important substrate-selectivity diversity. A better knowledge of the functionality of each LAB strain in the food matrix will permit to predict and shape the aroma profiles of fermented food.


Subject(s)
Alcohol Dehydrogenase/metabolism , Fermented Foods/microbiology , Fruit/microbiology , Lactobacillales/metabolism , Vegetables/microbiology , beta-Glucosidase/metabolism , Bioreactors/microbiology , Fermentation , Fermented Foods/analysis , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Lactic Acid/analysis , Lactobacillales/isolation & purification , Odorants/analysis , Random Amplified Polymorphic DNA Technique
2.
Sci Total Environ ; 664: 414-423, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30754009

ABSTRACT

Tonle Sap Lake, the largest freshwater body in Southeast Asia, plays an important role in lives and environment. The lake is reportedly under anthropogenic pressure and suffers from eutrophication. The floating villagers suffer from waterborne diseases. However, the shift in bacterial community due to human activities in this great lake has not yet been reported. We aimed to determine the dynamics of the bacterial community and their concentration in the lake using 67 surface waters, 53 sub-layer waters and 59 sediment samples by Next Generation Sequencing (NGS). The bacterial communities in the surface water and sub-layer water were similar but they differed from the sediment; however, their abundance showed spatiotemporal variations. The bacterial diversity reached the highest value in the dry season but lowest value in the rainy season in the surface water and sediment. Their diversity in the sub-layer water was highest in the transition from dry to rainy season. The total 16S rRNA gene copy number in the sediment were >100 times higher than that measured in the water. The Cyanobacteria, Actinobacteria, and Proteobacteria concentrations in the lake water increased in the dry season and reached a peak in the transition from dry to rainy season. The concentrations of Proteobacteria and Firmicutes elevated in the lake water and sediment, respectively, in the floating villages which were >10 times higher than the places with non-point sources. The bacterial concentration and its diversity in the Tonle Sap Lake changed based on the lake water volume between rainy and dry season. The bacterial concentration in the Tonle Sap Lake diluted with the water inflow from Mekong River and its tributaries in the rainy season. As influenced by the fecal waste, the bacterial community in the floating villages differed from the places with non-point source.


Subject(s)
Environmental Monitoring , Floods , Lakes/microbiology , Water Microbiology , Actinobacteria , Asia, Southeastern , Bacteria , Eutrophication , Proteobacteria
3.
Front Microbiol ; 9: 2278, 2018.
Article in English | MEDLINE | ID: mdl-30374334

ABSTRACT

Fermentation has been used for centuries to produce food in South-East Asia and some foods of this region are famous in the whole world. However, in the twenty first century, issues like food safety and quality must be addressed in a world changing from local business to globalization. In Western countries, the answer to these questions has been made through hygienisation, generalization of the use of starters, specialization of agriculture and use of long-distance transportation. This may have resulted in a loss in the taste and typicity of the products, in an extensive use of antibiotics and other chemicals and eventually, in a loss in the confidence of consumers to the products. The challenges awaiting fermentation in South-East Asia are thus to improve safety and quality in a sustainable system producing tasty and typical fermented products and valorising by-products. At the end of the "AsiFood Erasmus+ project" (www.asifood.org), the goal of this paper is to present and discuss these challenges as addressed by the Tropical Fermentation Network, a group of researchers from universities, research centers and companies in Asia and Europe. This paper presents current actions and prospects on hygienic, environmental, sensorial and nutritional qualities of traditional fermented food including screening of functional bacteria and starters, food safety strategies, research for new antimicrobial compounds, development of more sustainable fermentations and valorisation of by-products. A specificity of this network is also the multidisciplinary approach dealing with microbiology, food, chemical, sensorial, and genetic analyses, biotechnology, food supply chain, consumers and ethnology.

4.
J Water Health ; 16(3): 380-390, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29952327

ABSTRACT

Tracing the fate of pathogens in environmental water, particularly in wastewater, with a suitable methodology is a demanding task. We investigated the fate of Escherichia coli K12 in sewage influent and activated sludge using a novel approach that involves the application of a biologically stable dialysis device. The ion concentrations inside the device could reach that of surrounding solution when it was incubated in phosphate buffered saline for 2 h. E. coli K12 above 107 CFU mL-1 (inoculated in distilled water, influent, activated sludge) were introduced into the device and incubated in influent and activated sludge for 10 days. Without indigenous microorganisms, E. coli K12 could survive even with the limited ions and nutrients concentrations in influent and activated sludge. E. coli K12 abundance in influent and activated sludge were reduced by 60 and 85%, respectively, after just 1 day. The establishment of microbial community in wastewater played an important role in reducing E. coli K12. Bacteriophage propagated in filtered influent or activated sludge when E. coli K12 was introduced, but not in raw influent or activated sludge. The methodology developed in this study can be applied in the actual environmental water to trace the fate of pathogens.


Subject(s)
Escherichia coli K12/physiology , Kidneys, Artificial/microbiology , Sewage/microbiology , Water Microbiology , Membranes, Artificial , Time Factors , Wastewater/microbiology
5.
Chemistry ; 21(48): 17437-44, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26471723

ABSTRACT

The confinement of air-protected metallic magnetic nanoparticles in the inner cavity of carbon nanotubes (CNTs) should offer an interesting perspective for biomedical applications or for controlling CNT alignment in composites. Because the direct confinement of polymer-precoated nanoparticles in CNTs could be restricted by diffusion limitations, we developed a process based on: 1) the confinement of iron nanoparticles surface-modified with an iron polymerization catalyst in the cavity of CNTs and 2) the polymerization of isoprene on the confined nanoparticles. The resulting material consists in CNT-confined iron nanoparticles coated with a polyisoprene air barrier. This approach constitutes a proof of concept for the development of smart materials for use in medicine or composites.


Subject(s)
Butadienes/chemistry , Hemiterpenes/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Pentanes/chemistry , Catalysis , Magnetics , Polymerization
6.
Angew Chem Int Ed Engl ; 54(37): 10811-5, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26218322

ABSTRACT

Hybrid nanocomposites based on magnetic nanoparticles dispersed in liquid crystalline elastomers are fascinating emerging materials. Their expected strong magneto-elastic coupling may open new applications as actuators, magnetic switches, and for reversible storage of magnetic information. We report here the synthesis of a novel hybrid ferromagnetic liquid crystalline elastomer. In this material, highly anisotropic Co nanorods are aligned through a cross-linking process performed in the presence of an external magnetic field. We obtain a highly anisotropic magnetic material which exhibits remarkable magneto-elastic coupling. The nanorod alignment can be switched at will at room temperature by weak mechanical stress, leading to a change of more than 50 % of the remnant magnetization ratio and of the coercive field.

7.
ACS Nano ; 9(3): 2792-804, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25734760

ABSTRACT

Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering them air- and water-resistant, while conserving the monocrystallity, metallicity and the magnetic properties of the Co core. Thus, the as-synthesized core-shell ferromagnetic nanorods combine high magnetization and strong uniaxial magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes of high magnetization and anisotropic shape.

8.
Phys Chem Chem Phys ; 17(7): 5151-4, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25601493

ABSTRACT

We studied the effect of light irradiation on the electrical conductance of micro-rods of the spin crossover [Fe(Htrz)2(trz)](BF4) network, organized between interdigitated gold electrodes. By irradiating the sample with different wavelengths (between 295 and 655 nm) either in air or under a nitrogen atmosphere we observed both a reversible and an irreversible change of the current flowing in the device. The reversible process consists of an abrupt decrease of the current intensity (ca. 10-50%) upon light irradiation, while the irreversible process is characterized by a slow, but continuous increase in time of the current, which persists also in the dark. These photo-induced processes were only detected in the high conductance low-spin (LS) state of the complex. On switching the rods to the high spin (HS) state the conductance decreases two orders of magnitude (at the same temperature) and - as a consequence - the photo-effect vanishes.

9.
Nano Lett ; 14(6): 3481-6, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24828234

ABSTRACT

The implementation of nano-objects in numerous emerging applications often demands their integration in macroscopic devices. Here we present the bottom-up epitaxial solution growth of high-density arrays of vertical 5 nm diameter single-crystalline metallic cobalt nanowires on wafer-scale crystalline metal surfaces. The nanowires form regular hexagonal arrays on unpatterned metallic films. These hybrid heterostructures present an important perpendicular magnetic anisotropy and pave the way to a high density magnetic recording device, with capacities above 10 Terabits/in(2). This method bypasses the need of assembling and orientating free colloidal nanocrystals on surfaces. Its generalization to other materials opens new perspectives toward many applications.

10.
J Phys Chem B ; 118(11): 3218-25, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24552446

ABSTRACT

This work deals with the structural analysis of side-chain liquid crystalline polysiloxanes, doped with magnetic cobalt nanorods, and their orientational properties under a magnetic field. These new materials exhibit the original combination of orientational behavior and ferromagnetic properties at room temperature. Here we show that, within the liquid crystal polymer matrix, the cobalt nanorods self-assemble in bundles made of nanorod rows packed in a 2-dimensional hexagonal lattice. This structure accounts for the magnetic properties of the composites. The magnetic and orientational properties are discussed with respect to the nature of the polymer matrix.

11.
ACS Nano ; 8(2): 1350-63, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24401079

ABSTRACT

Nanotherapy using targeted magnetic nanoparticles grafted with peptidic ligands of receptors overexpressed in cancers is a promising therapeutic strategy. However, nanoconjugation of peptides can dramatically affect their properties with respect to receptor recognition, mechanism of internalization, intracellular trafficking, and fate. Furthermore, investigations are needed to better understand the mechanism whereby application of an alternating magnetic field to cells containing targeted nanoparticles induces cell death. Here, we designed a nanoplatform (termed MG-IONP-DY647) composed of an iron oxide nanocrystal decorated with a ligand of a G-protein coupled receptor, the cholecystokinin-2 receptor (CCK2R) that is overexpressed in several malignant cancers. MG-IONP-DY647 did not stimulate inflammasome of Raw 264.7 macrophages. They recognized cells expressing CCK2R with a high specificity, subsequently internalized via a mechanism involving recruitment of ß-arrestins, clathrin-coated pits, and dynamin and were directed to lysosomes. Binding and internalization of MG-IONP-DY647 were dependent on the density of the ligand at the nanoparticle surface and were slowed down relative to free ligand. Trafficking of CCK2R internalized with the nanoparticles was slightly modified relative to CCK2R internalized in response to free ligand. Application of an alternating magnetic field to cells containing MG-IONP-DY647 induced apoptosis and cell death through a lysosomal death pathway, demonstrating that cell death is triggered even though nanoparticles of low thermal power are internalized in minute amounts by the cells. Together with pioneer findings using iron oxide nanoparticles targeting tumoral cells expressing epidermal growth factor receptor, these data represent a solid basis for future studies aiming at establishing the proof-of-concept of nanotherapy of cancers using ligand-grafted magnetic nanoparticles specifically internalized via cell surface receptors.


Subject(s)
Cell Death , Endocrine Gland Neoplasms/metabolism , Magnetics , Nanoparticles , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Line , Endocrine Gland Neoplasms/pathology , Ferric Compounds/metabolism , Gastrins/metabolism , HEK293 Cells , Humans , Macrophages/metabolism , Mice
12.
Adv Mater ; 25(12): 1745-9, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23355030

ABSTRACT

The nanoscale manipulation and charge transport properties of the [Fe(Htrz)2(trz)](BF4) spin-crossover compound is demonstrated. Such 1D spin-crossover nanostructures are attractive building blocks for nanoelectronic switching and memory devices.

13.
Bioresour Technol ; 118: 390-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22705961

ABSTRACT

This study investigated the effect of heat-alkaline treatment (HAT) at pH 11 and 60 °C on volatile fatty acid (VFA) production and protein degradation in excess sludge, soluble and insoluble proteins, and pure cultures. In addition, quantification of bacteria present in the sludge was also examined. Experimental results showed that following acid fermentation under pH 7 and 37 °C, HAT enhanced VFA production in excess sludge, albumin, and Gram-negative bacteria, but not in casein or Gram-positive bacteria. Protein solubility was therefore found not to be the main criteria for VFA production. In the protein analysis, it was shown that the outer membrane protein (OmpC) of Escherichia coli K12 was resistant to chemical and enzymatic hydrolysis. Gram staining revealed that Gram-negative bacteria were predominant in the activated sludge used in this study. In addition, the bacteria present in the activated sludge comprised only 10% of mixed liquor suspended solids (MLSS) by quantitative PCR.


Subject(s)
Alkalies/pharmacology , Bacterial Proteins/metabolism , Biotechnology/methods , Fatty Acids, Volatile/biosynthesis , Hot Temperature , Proteolysis/drug effects , Sewage/chemistry , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Electrophoresis, Polyacrylamide Gel , Escherichia coli/drug effects , Escherichia coli/metabolism , Fermentation/drug effects , Polymerase Chain Reaction , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Sewage/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism
14.
Nano Lett ; 12(6): 3245-50, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22536848

ABSTRACT

We report a chemical method to prepare metallic Fe porous nanocubes. The presence of pores embedded inside the cubes was attested by electron tomography. Thanks to electronic holography and micromagnetic simulations, we show that the presence of these defects stabilizes the vortices in assembly of interacting cubes. These results open new perspectives toward magnetic vortex stabilization at relatively low cost for various applications (microelectronics, magnetic recording, or biological applications).


Subject(s)
Crystallization/methods , Iron/chemistry , Iron/radiation effects , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/radiation effects , Magnetic Fields , Materials Testing , Porosity
15.
Nano Lett ; 11(12): 5128-34, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22098424

ABSTRACT

We report on room temperature magnetoresistance in networks of chemically synthesized metallic Fe nanoparticles surrounded by two types of organic barriers. Electrical properties, featuring Coulomb blockade, and magnetotransport measurements show that this magnetoresistance arises from spin-dependent tunnelling, so the organic ligands stabilizing the nanoparticles are efficient spin-conservative tunnel barrier. These results demonstrate the feasibility of an all-chemistry approach for room temperature spintronics.

16.
Phys Rev Lett ; 99(17): 176805, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17995360

ABSTRACT

We report on magnetotransport measurements on millimetric superlattices of Co-Fe nanoparticles surrounded by an organic layer. At low temperature, the transition between the Coulomb blockade and the conductive regime becomes abrupt and hysteretic. The transition between both regimes can be induced by a magnetic field, leading to a novel mechanism of magnetoresistance. Between 1.8 and 10 K, a high-field magnetoresistance attributed to magnetic disorder at the surface of the particles is also observed. Below 1.8 K, this magnetoresistance abruptly collapses and a low-field magnetoresistance is observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...